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ABSTRACT

In the present dissertation we consider three crucial problems of numerical

linear algebra: solution of a linear system, an eigenvalue, and a singular value

problem. We focus on the solution methods which are iterative by their nature,

matrix-free, preconditioned and require a fixed amount of computational work

per iteration. In particular, this manuscript aims to contribute to the areas of

research related to the convergence theory of the restarted Krylov subspace min-

imal residual methods, preconditioning for symmetric indefinite linear systems,

approximation of interior eigenpairs of symmetric operators, and preconditioned

singular value computations.

We first consider solving non-Hermitian linear systems with the restarted

generalized minimal residual method (GMRES). We prove that the cycle-

convergence of the method applied to a system of linear equations with a normal

(preconditioned) coefficient matrix is sublinear. In the general case, however,

it is shown that any admissible cycle-convergence behavior is possible for the

restarted GMRES at a number of initial cycles, moreover the spectrum of the

coefficient matrix alone does not determine this cycle-convergence.



Next we shift our attention to iterative methods for solving symmetric indefi-

nite systems of linear equations with symmetric positive definite preconditioners.

We describe a hierarchy of such methods, from a stationary iteration to the op-

timal Krylov subspace preconditioned minimal residual method, and suggest a

preconditioning strategy based on an approximation of the inverse of the abso-

lute value of the coefficient matrix (absolute value preconditioners). We present

an example of a simple (geometric) multigrid absolute value preconditioner for

the symmetric model problem of the discretized real Helmholtz (shifted Lapla-

cian) equation in two spatial dimensions with a relatively low wavenumber.

We extend the ideas underlying the methods for solving symmetric indefinite

linear systems to the problem of computing an interior eigenpair of a symmet-

ric operator. We present a method that we call the Preconditioned Locally

Minimal Residual method (PLMR), which represents a technique for finding

an eigenpair corresponding to the smallest, in the absolute value, eigenvalue of

a (generalized) symmetric matrix pencil. The method is based on the idea of

the refined extraction procedure, performed in the preconditioner-based inner

product over four-dimensional trial subspaces, and relies on the choice of the

(symmetric positive definite) absolute value preconditioner.

Finally, we consider the problem of finding a singular triplet of a matrix. We

suggest a preconditioned iterative method called PLMR-SVD for computing a

singular triplet corresponding to the smallest singular value, and introduce pre-

conditioning for the problem. At each iteration, the method extracts approxima-

tions for the right and left singular vectors from two separate four-dimensional

trial subspaces by solving small quadratically constrained quadratic programs.



We illustrate the performance of the method on the example of the model prob-

lem of finding the singular triplet corresponding to the smallest singular value

of a gradient operator discretized over a two-dimensional domain. We construct

a simple multigrid preconditioner for this problem.

This abstract accurately represents the content of the candidate’s thesis. I

recommend its publication.

Signed
Andrew Knyazev



DEDICATION

To my family and friends.



ACKNOWLEDGMENT

I am deeply grateful to my advisor, Professor Andrew Knyazev, for introducing

me into the field. His vision of many problems and insights into their solution

have definitely influenced this work. Without his guidance and support the

present dissertation would have been impossible. I would like to direct my

deepest thank to Dr. Julien Langou. His advice and opinion, as of a colleague

and as of a friend, have always been important and timely. Chapter 2 of this

dissertation is based on the research that I have performed under his supervision.

It has partially been written during the three months support kindly provided

by Julien in Summer 2008. I am also indebted to Professor Jan Mandel for

introduction into the basics of multilevel methods. Several learned ideas have

echoed in this manuscript. I am grateful to Dr. Merico Argentati and Professor

Michele Benzi for reading this thesis and agreeing to be on my PhD committee.

I am thankful to my family and friends. Their care and support have been

inspiring during all stages of work on this dissertation.

Finally, I would like to thank the faculty and my fellow students at the

University of Colorado Denver for creating an excellent working atmosphere.

I am also grateful to Mr. and Mrs. Warren Bateman and the Department of

Mathematical and Statistical Sciences for the financial support.



CONTENTS

Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

Chapter

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2. Convergence of the restarted GMRES . . . . . . . . . . . . . . . . . . 6

2.1 The sublinear cycle-convergence of GMRES(m) for normal matrices 10

2.1.1 Krylov matrix, its pseudoinverse, and spectral factorization . . . 11

2.1.2 The sublinear cycle-convergence of GMRES(m) . . . . . . . . . . 13

2.2 Any admissible cycle-convergence behavior is possible for the restarted

GMRES at its initial cycles . . . . . . . . . . . . . . . . . . . . . . 24

2.2.1 Outline of the proof of Theorem 2.11 . . . . . . . . . . . . . . . . 27

2.2.2 Proof of Theorem 2.11 for the case of a strictly decreasing cycle-

convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.2.3 Extension to the case of stagnation . . . . . . . . . . . . . . . . . 37

2.2.4 Difference with the work of Greenbaum, Pták, and Strakoš [34] . 38
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1. Introduction

Complex numerical simulations and solutions of mathematical problems on

large-scale data sets have become the routine tasks in cutting edge research

and industry, resulting in a broad variety of computational algorithms. The

nature of the algorithms can be very diverse, however, often their efficiency

and robustness rely, ultimately, on the underlying techniques for solving basic

problems of numerical linear algebra.

In this work, we consider numerical solution of linear systems, eigenvalue

problems, and singular value problems; see, e.g., [42]. We assume that the

problems are of an extremely large size, and possibly sparse, i.e., the involved

coefficient matrices contain a significant number of zero entries. The exact so-

lutions of such problems are rarely needed. Instead, it is desirable to construct

computationally inexpensive approximations to the exact solutions. In this con-

text, the use of iterative methods, see, e.g., [3, 33, 59, 56], may be the only

option. The study of theoretical and practical aspects of several iterative meth-

ods, as well as the introduction of novel iterative techniques for solving the above

mentioned problems constitutes the core of the present dissertation.

The methods that we consider in this work share a number of common

characteristics. First, their mathematical formulations are based on short-term

recurrent relations, which allows constructing solvers with a fixed amount of

computational work and storage per iteration. Second, the methods are precon-

ditioned, i.e., they can use auxiliary operators, called preconditioners, which, if
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properly defined, significantly improve the convergence, and, ideally, only mod-

estly affect the cost of each iteration.

In the current manuscript, we address a set of computationally challenging

problems, such as numerical solution of symmetric indefinite and nonsymmetric

linear systems, computation of interior eigenpairs of symmetric matrix pencils,

and finding the smallest singular triplets of general matrices. Our main re-

sults concern the convergence theory of the restarted Krylov subspace minimal

residual methods, novel preconditioning strategies for symmetric indefinite lin-

ear systems and eigenvalue problems, as well as the extension of the concept of

preconditioning to singular value problems.

In Chapter 2, we consider the restarted generalized minimal residual method

(GMRES) for non-Hermitian linear systems. We prove that the cycle-convergence

of the method applied to a system of linear equations with a normal (precondi-

tioned) coefficient matrix is sublinear. In the general case, however, it is shown

that any admissible cycle-convergence behavior is possible for the restarted GM-

RES at a number of initial cycles, moreover the spectrum of the coefficient matrix

alone does not determine this cycle-convergence. The results of this chapter are

mostly published in [77, 76].

In Chapters 3, 4, and 5, we consider iterative solution of symmetric indefinite

systems, symmetric eigenvalue, and singular value problems, respectively. The

material is presented in such a way that we can emphasize the interconnections

between the problems, which allows us to treat their numerical solution within

a unified approach. The obtained results, presented in the chapters, appear here

for the first time. We note that the choice of the real vector spaces has been
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motivated merely by the desire to simplify the presentation. The extension to

the complex case is straightforward.

In Chapter 3, first, we describe a hierarchy of methods for solving symmetric

indefinite linear systems with symmetric positive definite (SPD) precondition-

ers. These methods are, mainly, based on the known idea of the minimization

of the residual in the preconditioner-based norm. The careful study of such

methods is motivated by a search of appropriate iterative schemes, which can

be extended to the problems of finding interior eigenpairs of symmetric oper-

ators, as well as computing the smallest singular triplets of general matrices.

For example, we describe a method, which can be viewed as a natural analogue

of the preconditioned steepest descent algorithm for solving SPD systems, and

is the simplest proved to be convergent residual-minimizing method for solving

symmetric indefinite systems with an SPD preconditioner. We use the locally

optimal accelerations of this method to construct the base scheme, which is

further extended to eigenvalue and singular value problems.

Second, in Chapter 3, we suggest a novel preconditioning strategy, which is

based on the idea of approximating the inverse of the absolute value of the coef-

ficient matrix. We call preconditioners, which are obtained using this strategy,

the absolute value preconditioners. We show, for a model problem of the dis-

cretized real Helmholtz (shifted Laplacian) equation in two spatial dimensions

with a relatively low wavenumber, that such preconditioners can be efficiently

constructed, e.g., in the multigrid framework. It is significant that the same

preconditioners can be used for finding interior eigenpairs of symmetric matrix

pencils, if applied within the scheme described in Chapter 4. The absolute value
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preconditioners for symmetric indefinite systems also motivate the definition of

preconditioners for the singular value problems in Chapter 5.

Using the results of Chapter 3, in Chapter 4, we present a new method, that

we call the Preconditioned Locally Minimal Residual method (PLMR), which

represents a technique for finding an eigenpair corresponding to the smallest, in

the absolute value, eigenvalue of a (generalized) symmetric matrix pencil. The

method is based on the idea of the refined extraction procedure, also called the

refined projection procedure, performed in the preconditioner-based inner prod-

uct over four-dimensional trial subspaces, and relies on the choice of the (SPD)

absolute value preconditioner. We applied the described technique to the model

problem of finding an eigenpair of the two-dimensional discretized Laplace oper-

ator, which corresponds to the eigenvalue, closest to a given shift. The method

demonstrated a satisfactory convergence behavior, with the convergence rate

comparable, at a number of initial steps, to that of the optimal preconditioned

minimal residual method, applied to the problem of finding the corresponding

null space (eigenspace) of the shifted Laplacian.

Finally, in Chapter 5, we consider the problem of finding a singular triplet

of a matrix. We suggest a new preconditioned iterative method, that we refer to

as PLMR-SVD, for computing a singular triplet corresponding to the smallest

singular value. The method has several important features. First, at every

step, it uses a pair of separate four-dimensional trial subspaces for extracting

the right and left singular vectors, respectively. Second, it admits two SPD

preconditioners, designed specifically for a singular value problem. We show

that even the proper choice of only one of the two preconditioners can result in

4



a significantly improved convergence behavior. As a model problem we consider

computing a singular triplet, corresponding to the smallest singular value, of a

discrete two-dimensional gradient operator. We present a simple construction

of the multigrid preconditioner for this problem.

Let us summarize the main results obtained within the scope of the present

dissertation: we have proved two theoretical results which concern the con-

vergence theory of the restarted GMRES algorithm, introduced a new precon-

ditioning strategy for symmetric indefinite linear systems, suggested a novel

preconditioned method for computing interior eigenpairs of symmetric matrix

pencils, and described a preconditioned method for finding the smallest singular

triplets.

This work has been partially supported by the NSF-DMS 0612751.
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2. Convergence of the restarted GMRES

The generalized minimal residual method (GMRES) was originally intro-

duced by Saad and Schultz [61] in 1986, and has become a popular method for

solving non-Hermitian systems of linear equations,

Ax = b, A ∈ Cn×n, b ∈ Cn. (2.1)

Without loss of generality, to simplify the presentation below, we assume that

system (2.1) is already preconditioned.

GMRES is classified as a Krylov subspace (projection) iterative method.

At every new iteration i, GMRES constructs an approximation x(i) ∈ x(0) +

Ki
(
A, r(0)

)
to the exact solution of (2.1) such that the 2-norm of the corre-

sponding residual vector r(i) = b − Ax(i) is minimized over the affine space

r(0) + AKi
(
A, r(0)

)
, i.e.,

r(i) = min
u∈AKi(A,r(0))

‖r(0) − u‖, (2.2)

where Ki
(
A, r(0)

)
is the i-dimensional Krylov subspace

Ki
(
A, r(0)

)
= span{r(0), Ar(0), . . . , Ai−1r(0)}

induced by the matrix A and the initial residual vector r(0) = b−Ax(0) with x(0)

being an initial approximate solution of (2.1),

AKi
(
A, r(0)

)
= span{Ar(0), A2r(0), . . . , Air(0)}.
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As usual, in a linear setting, a notion of minimality is associated with some

orthogonality condition. In our case, minimization (2.2) is equivalent to forc-

ing the new residual vector r(i) to be orthogonal to the subspace AKi
(
A, r(0)

)
(also known as the Krylov residual subspace). In practice, for a large problem

size, the latter orthogonality condition results in a costly procedure of orthog-

onalization against the expanding Krylov residual subspace. Orthogonalization

together with storage requirement makes the GMRES method complexity and

storage prohibitive for practical application. A straightforward treatment for

this complication is the so-called restarted GMRES [61].

The restarted GMRES, or GMRES(m), is based on restarting GMRES after

every m iterations. At each restart, we use the latest approximate solution as

the initial approximation for the next GMRES run. Within this framework a

single run of m GMRES iterations is called a GMRES(m) cycle, and m is called

the restart parameter. Consequently, restarted GMRES can be regarded as a

sequence of GMRES(m) cycles. When the convergence happens without any

restart occurring, the algorithm is known as the full GMRES.

In the context of restarted GMRES, our interest will shift towards the resid-

ual vectors r(k) at the end of every kth GMRES(m) cycle (as opposed to the

residual vectors r(i) (2.2) obtained at each iteration of the algorithm).

Definition 2.1 (cycle-convergence) We define the cycle-convergence of the

restarted GMRES(m) to be the convergence of the residual norms ‖r(k)‖, where,

for each k, r(k) is the residual at the end of the kth GMRES(m) cycle.

GMRES(m) constructs approximations x(k) ∈ x(k−1) +Km
(
A, r(k−1)

)
to the

exact solution of (2.1) such that each residual vector r(k) = b − Ax(k) satisfies

7



the local minimality condition

r(k) = min
u∈AKm(A,r(k−1))

‖r(k−1) − u‖, (2.3)

where Km
(
A, r(k−1)

)
is the m-dimensional Krylov subspace produced at the kth

GMRES(m) cycle,

Km
(
A, r(k−1)

)
= span{r(k−1), Ar(k−1), . . . , Am−1r(k−1)}, (2.4)

AKm
(
A, r(k−1)

)
= span{Ar(k−1), A2r(k−1), . . . , Amr(k−1)} is the corresponding

Krylov residual subspace.

The price paid for the reduction of the computational work in GMRES(m)

is the loss of global optimality in (2.2). Although (2.3) implies a monotonic de-

crease of the norms of the residual vectors r(k), GMRES(m) can stagnate [61, 80].

This is in contrast with the full GMRES which is guaranteed to converge to the

exact solution of (2.1) in n steps (assuming exact arithmetic and nonsingular A).

In practice, however, if n is too large, proper choices of a preconditioner and a

restart parameter, e.g., [25, 26, 46], can significantly accelerate the convergence

of GMRES(m), thus making the method attractive for applications.

While a great deal of effort has been devoted to the characterization of the

convergence of the full GMRES, e.g., [74, 21, 34, 35, 43, 70, 72], our understand-

ing of the behavior of GMRES(m) is far from complete, leaving us with more

questions than answers, e.g., [25].

For a few classes of matrices, convergence estimates are available for the

restarted GMRES and/or the full GMRES. For example, for real positive definite

matrices (that is, for matrices A for which H = (A+AT )/2 is symmetric positive

8



definite, or, equivalently, for matrices A for which xTAx > 0 for any nonzero

x ∈ Rn), the Elman’s bound [22, 23, 33, 61] can be stated as follows

‖r(k)‖2 ≤ (1− ρ)k‖r(0)‖2 where 0 < ρ ≡ (λmin(H)/‖A‖)2 ≤ 1.

The latter guarantees the linear cycle-convergence of GMRES(m) for a positive

definite matrix. Improvements and generalizations of this bound can be found

in [8, 63, 82].

For normal matrices the convergence of the full GMRES is well studied. In

particular, the convergence is known to be governed solely by the spectrum of

A [62, 74]. In Section 2.1 of this manuscript, we prove that the cycle-convergence

of restarted GMRES for normal matrices is sublinear. This statement means

that, for normal matrices, the reduction in the norm of the residual vector at the

current GMRES(m) cycle cannot be better than the reduction at the previous

cycle. We would like to mention the simultaneous but independent work [5],

where the authors present an alternative proof of the sublinear convergence of

the restarted GMRES for normal matrices.

Assuming that the coefficient matrix A is diagonalizable, some character-

izations of the convergence of the full GMRES rely on the condition number

of the eigenbasis [74]. Other characterizations of the convergence of the full

GMRES rely on pseudospectra [52]. More commonly, the field of values is

used [8, 22, 23, 33, 61, 63, 82]. A discussion on how descriptive some of these

bounds are is given by Embree [24].

In the general case, for the full GMRES, the following theorem shows that

we cannot prove convergence results based only on the spectrum of the coefficient

matrix alone.
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Theorem 2.2 (Greenbaum, Pták, and Strakoš, 1996, [34]) Given a non-

increasing positive sequence f(0) ≥ f(1) ≥ · · · ≥ f(n − 1) > 0, there exists an

n-by-n matrix A and a vector r(0) with ‖r(0)‖ = f(0) such that f(i) = ‖r(i)‖,

i = 1, . . . , n− 1, where r(i) is the residual at step i of the GMRES algorithm ap-

plied to the linear system Ax = b, with initial residual r(0) = b−Ax(0). Moreover,

the matrix A can be chosen to have any desired (nonzero) eigenvalues.

This result states that, in general, eigenvalues alone do not determine the con-

vergence of the full GMRES. A complete description of the set of all pairs {A, b}

for which the full GMRES applied to (2.1) generates the prescribed convergence

curve while the matrix A has any (nonzero) eigenvalues, is given in [2].

In Section 2.2, we show that any admissible cycle-convergence behavior is

possible for restarted GMRES at a number of initial cycles, moreover the spec-

trum of the coefficient matrix alone does not determine this cycle-convergence.

The latter can be viewed as an extension of the result of Greenbaum, Pták, and

Strakoš, given by Theorem 2.2, for the case of restarted GMRES.

2.1 The sublinear cycle-convergence of GMRES(m) for normal

matrices

Throughout this section we assume (unless otherwise explicitly stated) A to

be nonsingular and normal, i.e., A admits the decomposition

A = V ΛV ∗, (2.5)

where Λ ∈ Cn×n is a diagonal matrix with the diagonal elements being the

nonzero eigenvalues of A, and V ∈ Cn×n is a unitary matrix of the corresponding

eigenvectors. ‖ · ‖ denotes the 2-norm throughout.
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2.1.1 Krylov matrix, its pseudoinverse, and spectral factorization

For a given restart parameter m (1 ≤ m ≤ n−1), let us denote the kth cycle

of GMRES(m) applied to system (2.1), with the initial residual vector r(k−1) as

GMRES(A, m, r(k−1)). We assume that the residual vector r(k), produced at

the end of GMRES(A, m, r(k−1)), is nonzero.

A run of GMRES(A, m, r(k−1)) generates the Krylov subspaceKm
(
A, r(k−1)

)
given in (2.4). For each Km

(
A, r(k−1)

)
we define a matrix

K
(
A, r(k−1)

)
=
[
r(k−1) Ar(k−1) · · · Amr(k−1)

]
∈ Cn×(m+1), (2.6)

where k = 1, 2, . . . , q, and q is the total number of GMRES(m) cycles.

Matrix (2.6) is called the Krylov matrix. We say that K
(
A, r(k−1)

)
cor-

responds to the cycle GMRES(A, m, r(k−1)). Note that the columns of

K
(
A, r(k−1)

)
span the next (m+1)-dimensional Krylov subspaceKm+1(A, r(k−1)).

According to (2.3), the assumption r(k) 6= 0 implies that r(k−1) cannot be ex-

pressed as a linear combination of vectors in AKm
(
A, r(k−1)

)
. Thus, the matrix

K
(
A, r(k−1)

)
in (2.6) is of the full rank,

rank
(
K
(
A, r(k−1)

))
= m+ 1.

This equality allows us to introduce the Moore–Penrose pseudoinverse of

the matrix K
(
A, r(k−1)

)
, i.e.,

K†
(
A, r(k−1)

)
=
(
K∗
(
A, r(k−1)

)
K
(
A, r(k−1)

))−1
K∗
(
A, r(k−1)

)
∈ C(m+1)×n,

which is well-defined and unique. The following lemma shows that the first

column of
(
K†
(
A, r(k−1)

))∗
is the next residual vector r(k) up to a scaling factor.
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Lemma 2.3 Given A ∈ Cn×n (not necessarily normal), for any k = 1, 2, . . . , q,

we have (
K†
(
A, r(k−1)

))∗
e1 =

1

‖r(k)‖2 r
(k), (2.7)

where e1 = [1 0 · · · 0]T ∈ Rm+1.

Proof: See Ipsen [43, Theorem 2.1], as well as [17, 65].

Another important ingredient, first described in [43], is the so-called spectral

factorization of the Krylov matrix K
(
A, r(k−1)

)
. This factorization is made of

three components that encapsulate separately the information on eigenvalues of

A, its eigenvectors, and the previous residual vector r(k−1).

Lemma 2.4 Let A ∈ Cn×n satisfy (2.5). Then the Krylov matrix K
(
A, r(k−1)

)
,

for any k = 1, 2, . . . q, can be factorized as

K
(
A, r(k−1)

)
= V Dk−1Z, (2.8)

where dk−1 = V ∗r(k−1) ∈ Cn, Dk−1 = diag (dk−1) ∈ Cn×n, and Z ∈ Cn×(m+1) is

the Vandermonde matrix computed from the eigenvalues of A,

Z = [e Λe · · · Λme] , (2.9)

e = [1 1 · · · 1]T ∈ Rn.
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Proof: Starting from (2.5) and the definition of the Krylov matrix (2.6),

K
(
A, r(k−1)

)
=
[
r(k−1) Ar(k−1) · · · Amr(k−1)

]
=
[
V V ∗r(k−1) V ΛV ∗r(k−1) · · · V ΛmV ∗r(k−1)

]
= V [dk−1 Λdk−1 · · · Λmdk−1]

= V [Dk−1e ΛDk−1e · · · ΛmDk−1e]

= V Dk−1 [e Λe · · · Λme] = V Dk−1Z.

It is clear that the statement of Lemma 2.4 can be easily generalized to

the case of a diagonalizable (nonnormal) matrix A providing that we define

dk−1 = V −1r(k−1) in the lemma.

2.1.2 The sublinear cycle-convergence of GMRES(m)

Along with (2.1) let us consider the system

A∗x = b (2.10)

with the matrix A replaced by its conjugate transpose. Clearly, according

to (2.5),

A∗ = V ΛV ∗. (2.11)

It turns out that m steps of GMRES applied to systems (2.1) and (2.10)

produce residual vectors of equal norms at each step—provided that the initial

residual vector is identical. This observation is crucial for proving the sublinear

cycle-convergence of GMRES(m) and is formalized in the following lemma.

Lemma 2.5 Assume that A ∈ Cn×n is a nonsingular normal matrix. Let r(m)

and r̂(m) be the nonzero residual vectors obtained by applying m steps of GMRES

13



to systems (2.1) and (2.10); 1 ≤ m ≤ n− 1. Then

∥∥r(m)
∥∥ =

∥∥r̂(m)
∥∥ ,

provided that the initial approximate solutions of (2.1) and (2.10) induce the

same initial residual vector r(0).

Moreover, if pm(z) and qm(z) are the (GMRES) polynomials which mini-

mize, respectively, ‖p(A)r(0)‖ and ‖p(A∗)r(0)‖ over p(z) ∈ Pm, where Pm is the

set of all polynomials of degree at most m defined on the complex plane such that

p(0) = 1, then

pm(z) = qm(z),

where p(z) denotes the polynomial obtained from p(z) ∈ Pm by the complex

conjugation of its coefficients.

Proof: Let us consider a polynomial p(z) ∈ Pm. Let r(0) be a nonzero

initial residual vector for systems (2.1) and (2.10) simultaneously. Since the

matrix A is normal, so is p(A); thus p(A) commutes with its conjugate transpose

p∗(A). We have

‖p(A)r(0)‖2 = (p(A)r(0), p(A)r(0)) = (r(0), p∗(A)p(A)r(0))

= (r(0), p(A)p∗(A)r(0)) = (p∗(A)r(0), p∗(A)r(0))

= ((V p(Λ)V ∗)∗ r(0), (V p(Λ)V ∗)∗ r(0))

= (V p(Λ)V ∗r(0), V p(Λ)V ∗r(0))

= (p(V ΛV ∗)r(0), p(V ΛV ∗)r(0)) = ‖p(V ΛV ∗)r(0)‖2,

14



where p(z) is the polynomial obtained from p(z) by conjugating its coefficients.

By (2.11) we conclude that

‖p(A)r(0)‖ = ‖p(A∗)r(0)‖.

We note that the last statement is true for any polynomial p, for any r0, and for

any normal A.

Now, let us look at ‖r(m)‖ and ‖r̂(m)‖. On the one hand,

‖r(m)‖= min
p∈Pm

‖p(A)r(0)‖ = ‖pm(A)r(0)‖ = ‖pm(A∗)r(0)‖

≥ min
p∈Pm

‖p(A∗)r(0)‖ = min
p∈Pm

‖p(A∗)r(0)‖ = ‖r̂(m)‖.

On the other hand,

‖r̂(m)‖= min
p∈Pm

‖p(A∗)r(0)‖ = ‖qm(A∗)r(0)‖ = ‖qm(A)r(0)‖

≥ min
p∈Pm

‖p(A)r(0)‖ = min
p∈Pm

‖p(A)r(0)‖ = ‖r(m)‖.

Combining both results, we conclude that

‖r(m)‖ = ‖r̂(m)‖,

which proves the first part of the lemma.

To prove the second part of the lemma, we consider the following equalities:

‖qm(A∗)r(0)‖= min
p∈Pm

‖p(A∗)r(0)‖ = ‖r̂(m)‖ = ‖r(m)‖ = min
p∈Pm

‖p(A)r(0)‖

= ‖pm(A)r(0)‖ = ‖pm(A∗)r(0)‖.

By uniqueness of the GMRES polynomial [36, Theorem 2], we conclude that

pm(z) = qm(z).
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The previous lemma is a general result for the full GMRES, which states

that, given a nonsingular normal matrix A and an initial residual vector r(0),

GMRES applied to A with r(0) produces the same convergence curve as GMRES

applied to A∗ with r(0). In the framework of restarted GMRES, Lemma 2.5

implies that the cycles GMRES(A, m, r(k−1)) and GMRES(A∗, m, r(k−1)) result

in, respectively, residual vectors r(k) and r̂(k) that have the same norm.

Theorem 2.6 (the sublinear cycle-convergence of GMRES(m))

Let
{
r(k)
}q
k=0

be a sequence of nonzero residual vectors produced by GMRES(m)

applied to system (2.1) with a nonsingular normal matrix A ∈ Cn×n, 1 ≤ m ≤

n− 1. Then

‖r(k)‖
‖r(k−1)‖

≤ ‖r
(k+1)‖
‖r(k)‖

, k = 1, . . . , q − 1. (2.12)

Proof: Left multiplication of both parts of (2.7) by K∗
(
A, r(k−1)

)
leads to

e1 =
1

‖r(k)‖2
K∗
(
A, r(k−1)

)
r(k).

By (2.8) in Lemma 2.4, we factorize the Krylov matrix K
(
A, r(k−1)

)
in the

previous equality:

e1 =
1

‖r(k)‖2
(V Dk−1Z)∗ r(k) =

1

‖r(k)‖2
Z∗Dk−1V

∗r(k)

=
1

‖r(k)‖2
Z∗Dk−1dk.

Applying complex conjugation to this equality (and observing that e1 is real),

we get

e1 =
1

‖r(k)‖2
ZTDk−1dk.

According to the definition of Dk−1 in Lemma 2.4, Dk−1dk = Dkdk−1; thus

e1 =
1

‖r(k)‖2
ZTDkdk−1 =

1

‖r(k)‖2

(
ZTDkV

∗) r(k−1) =
1

‖r(k)‖2

(
V DkZ

)∗
r(k−1).
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From (2.8) and (2.11) we notice that

K
(
A∗, r(k)

)
= K

(
V ΛV ∗, r(k)

)
= V DkZ,

and so therefore

e1 =
1

‖r(k)‖2
K∗
(
A∗, r(k)

)
r(k−1). (2.13)

Considering the residual vector r(k−1) as a solution of the underdetermined

system (2.13), we can represent the latter as

r(k−1) = ‖r(k)‖2
(
K∗
(
A∗, r(k)

))†
e1 + wk, (2.14)

where wk ∈ null
(
K∗
(
A∗, r(k)

))
. We note that since r(k+1) is nonzero (as-

sumption in Theorem 2.6), the residual vector r̂(k+1) at the end of the cycle

GMRES(A∗, m, r(k)) is nonzero as well by Lemma 2.5; hence the corresponding

Krylov matrix K
(
A∗, r(k)

)
is of the full rank, and thus the pseudoinverse in

(2.14) is well defined. Moreover, since

wk ⊥
(
K∗
(
A∗, r(k)

))†
e1,

using the Pythagorean theorem we obtain

‖r(k−1)‖2 = ‖r(k)‖4‖
(
K∗
(
A∗, r(k)

))†
e1‖2 + ‖wk‖2.

Now, since (K∗(A∗, r(k)))† = (K†(A∗, r(k))∗), we get

‖r(k−1)‖2 = ‖r(k)‖4‖
(
K†
(
A∗, r(k)

))∗
e1‖2 + ‖wk‖2,

and then by (2.7),

=
‖r(k)‖4

‖r̂(k+1)‖2
+ ‖wk‖2

≥ ‖r(k)‖4

‖r̂(k+1)‖2
,
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Figure 2.1: Cycle-convergence of GMRES(5) applied to a 100-by-100 normal
matrix.

where r̂(k+1) is the residual vector at the end of the cycle GMRES(A∗, m, r(k)).

Finally,

‖r(k)‖2

‖r(k−1)‖2
≤ ‖r

(k)‖2‖r̂(k+1)‖2

‖r(k)‖4
=
‖r̂(k+1)‖2

‖r(k)‖2
,

so that

‖r(k)‖
‖r(k−1)‖

≤ ‖r̂
(k+1)‖
‖r(k)‖

. (2.15)

By Lemma 2.5, the norm of the residual vector r̂(k+1) at the end of the cycle

GMRES(A∗, m, r(k)) is equal to the norm of the residual vector r(k+1) at the

end of the cycle GMRES(A, m, r(k)), which completes the proof of the theorem.

Geometrically, Theorem 2.6 suggests that any residual curve of a restarted

GMRES, applied to a system with a nonsingular normal matrix, is nonincreasing

and concave up (Figure 2.1).

Corollary 2.7 (cycle-convergence of GMRES(m)) Let ‖r(0)‖ and ‖r(1)‖

be given. Then, under assumptions of Theorem 2.6, norms of the residual vectors
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r(k) at the end of each GMRES(m) cycle satisfy the following inequality

‖r(k+1)‖ ≥ ‖r(1)‖
(
‖r(1)‖
‖r(0)‖

)k
, k = 1, . . . , q − 1. (2.16)

Proof: Directly follows from (2.12).

Inequality (2.16) shows that we are able to provide a lower bound for the

residual norm at any cycle k > 1 after performing only one cycle of GMRES(m),

applied to system (2.1) with a nonsingular normal matrix A.

From the proof of Theorem 2.6 it is clear that, for a fixed k, the equality

in (2.12) holds if and only if the vector wk in (2.14) from the null space of the

corresponding matrix K∗
(
A∗, r(k)

)
is zero. In particular, if the restart parameter

is chosen to be one less than the problem size, i.e., m = n − 1, the matrix

K∗
(
A∗, r(k)

)
in (2.13) becomes an n-by-n nonsingular matrix, hence with a zero

null space, and thus inequality (2.12) is indeed an equality if m = n− 1.

We now show that the cycle-convergence of GMRES(n − 1), applied to

system (2.1) with a nonsingular normal matrix A, can be completely determined

by norms the of the two initial residual vectors r(0) and r(1).

Corollary 2.8 (the cycle-convergence of GMRES(n− 1)) Let us suppose

that ‖r(0)‖ and ‖r(1)‖ are given. Then, under the assumptions of Theorem 2.6,

norms of the residual vectors r(k) at the end of each GMRES(n− 1) cycle obey

the following formula:

‖r(k+1)‖ = ‖r(1)‖
(
‖r(1)‖
‖r(0)‖

)k
, k = 1, . . . , q − 1. (2.17)

Proof: Representation (2.14) of the residual vector r(k−1) for m = n − 1

turns into

r(k−1) = ‖r(k)‖2
(
K∗
(
A∗, r(k)

))−1
e1, (2.18)
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implying, by the proof of Theorem 2.6, that the equality in (2.12) holds at each

GMRES(n− 1) cycle. Thus,

‖r(k+1)‖ = ‖r(k)‖ ‖r
(k)‖

‖r(k−1)‖
, k = 1, . . . , q − 1.

We show (2.17) by induction in k. Using the formula above, it is easy to

verify (2.17) for ‖r(2)‖ and ‖r(3)‖ (k = 1, 2). Let us assume that for some k,

3 ≤ k ≤ q − 1, ‖r(k−1)‖ and ‖r(k)‖ can also be computed by (2.17). Then

‖r(k+1)‖ = ‖r(k)‖ ‖r
(k)‖

‖r(k−1)‖
= ‖r(1)‖

(
‖r(1)‖
‖r(0)‖

)k−1 ‖r(1)‖
(
‖r(1)‖
‖r(0)‖

)k−1

‖r(1)‖
(
‖r(1)‖
‖r(0)‖

)k−2

= ‖r(1)‖
(
‖r(1)‖
‖r(0)‖

)k−1(‖r(1)‖
‖r(0)‖

)
= ‖r(1)‖

(
‖r(1)‖
‖r(0)‖

)k
.

Thus, (2.17) holds for all k = 1, . . . , q − 1.

Another observation in the proof of Theorem 2.6 leads to a result from

Baker, Jessup, and Manteuffel [6]. In this paper, the authors prove that, if

GMRES(n−1) is applied to a system with Hermitian or skew-Hermitian matrix,

the residual vectors at the end of each restart cycle alternate direction in a cyclic

fashion [6, Theorem 2]. In the following corollary we (slightly) refine this result

by providing the exact expression for the constants αk in [6, Theorem 2].

Corollary 2.9 (the alternating residuals) Let
{
r(k)
}q
k=0

be a sequence of

nonzero residual vectors produced by GMRES(n − 1) applied to system (2.1)

with a nonsingular Hermitian or skew-Hermitian matrix A ∈ Cn×n. Then

r(k+1) = αkr
(k−1), αk =

∥∥r(k+1)
∥∥2

‖r(k)‖2 ∈ (0, 1] , k = 1, 2, . . . , q − 1. (2.19)
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Proof: For the case of a Hermitian matrix A, i.e., A∗ = A, the proof

follows directly from (2.7) and (2.18).

Let A be skew-Hermitian, i.e., A∗ = −A. Then, by (2.7) and (2.18),

r(k−1) =
(
K∗
(
A∗, r(k)

))−1
e1 =

(
K∗
(
−A, r(k)

))−1
e1 =

‖r(k)‖2

‖r̂(k+1)‖2
r̂(k+1),

where r̂(k+1) is the residual at the end of the cycle GMRES(−A, n− 1, r(k)).

According to (2.3), the residual vectors r(k+1) and r̂(k+1) at the end of the

cycles GMRES(A, n − 1, r(k)) and GMRES(−A, n − 1, r(k)) are obtained by

orthogonalizing r(k) against the Krylov residual subspaces AKn−1

(
A, r(k)

)
and

(−A)Kn−1

(
−A, r(k)

)
, respectively. But (−A)Kn−1

(
−A, r(k)

)
= AKn−1

(
A, r(k)

)
,

and hence r̂(k+1) = r(k+1).

In general, for systems with nonnormal matrices, the cycle-convergence be-

havior of the restarted GMRES is not sublinear. In Figure 2.2, we consider

a nonnormal diagonalizable matrix and illustrate the claim. Indeed, for non-

normal matrices, it has been observed that the cycle-convergence of restarted

GMRES can be superlinear [81].

In this concluding subsection we restrict our attention to the case of a diag-

onalizable matrix A,

A = V ΛV −1, A∗ = V −∗ΛV ∗. (2.20)

The analysis performed in Theorem 2.6 can be generalized for the case of a

diagonalizable matrix [79], resulting in inequality (2.15). However, as we depart

from normality, Lemma 2.5 fails to hold and the norm of the residual vector r̂(k+1)

at the end of the cycle GMRES(A∗, m, r(k)) is no longer equal to the norm of the

vector r(k+1) at the end of GMRES(A, m, r(k)). Moreover, since the eigenvectors
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Figure 2.2: Cycle-convergence of GMRES(5) applied to a 100-by-100 diago-
nalizable (nonnormal) matrix.

of A can be significantly changed by transpose-conjugation, as (2.20) suggests,

the matrices A and A∗ can have almost nothing in common, so that the norms of

r̂(k+1) and r(k+1) are, possibly, far from being equal. This creates an opportunity

to break the sublinear convergence of GMRES(m), provided that the subspace

AKm
(
A, r(k)

)
results in a better approximation (2.3) of the vector r(k) than the

subspace A∗Km
(
A∗, r(k)

)
.

It is natural to expect that the convergence of the restarted GMRES for “al-

most normal” matrices will be “almost sublinear.” We quantify this statement

in the following theorem.

Theorem 2.10 Let
{
r(k)
}q
k=0

be a sequence of nonzero residual vectors produced

by GMRES(m) applied to system (2.1) with a nonsingular diagonalizable matrix

A ∈ Cn×n as in (2.20), 1 ≤ m ≤ n− 1. Then

‖r(k)‖
‖r(k−1)‖

≤
α
(
‖r(k+1)‖+ βk

)
‖r(k)‖

, k = 1, . . . , q − 1, (2.21)

where α = σ−2
min(V ), βk = ‖pk(A)(I − V V ∗)r(k)‖, pk(z) is the polynomial con-

structed at the cycle GMRES(A, m, r(k)), and where q is the total number of
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GMRES(m) cycles. We note that 0 < α −→ 1 and 0 < βk −→ 0 as V ∗V −→ I.

Proof: Let us consider the norm of the residual vector r̂(k+1) at the end of

the cycle GMRES(A∗, m, r(k)). Then we have

‖r̂(k+1)‖ = min
p̂∈Pm

‖p̂(A∗)r(k)‖ ≤ ‖p(A∗)r(k)‖,

where p(z) ∈ Pm is any polynomial of degree at most m such that p(0) = 1.

Then, using (2.20),

‖r̂(k+1)‖ ≤ ‖p(A∗)r(k)‖

= ‖V −∗p(Λ)V ∗r(k)‖

= ‖V −∗p(Λ)(V −1V )V ∗r(k)‖

= ‖V −∗p(Λ)V −1(V V ∗)r(k)‖

= ‖V −∗p(Λ)V −1(I − (I − V V ∗))r(k)‖

= ‖V −∗p(Λ)
(
V −1rk − V −1(I − V V ∗)r(k)

)
‖

≤ ‖V −∗‖‖p(Λ)
(
V −1r(k) − V −1(I − V V ∗)r(k)

)
‖.

We note that

‖p(Λ)
(
V −1r(k) − V −1(I − V V ∗)r(k)

)
‖ = ‖p(Λ)

(
V −1r(k) − V −1(I − V V ∗)r(k)

)
‖.

Thus,

‖r̂(k+1)‖ ≤ ‖V −∗‖‖p(Λ)
(
V −1r(k) − V −1(I − V V ∗)r(k)

)
‖

= ‖V −∗‖‖(V −1V )p(Λ)
(
V −1r(k) − V −1(I − V V ∗)r(k)

)
‖

≤ ‖V −∗‖‖V −1‖‖V p(Λ)V −1r(k) − V p(Λ)V −1(I − V V ∗)r(k)‖

=
1

σ2
min(V )

‖p(V ΛV −1)r(k) − p(V ΛV −1)(I − V V ∗)r(k)‖

≤ 1

σ2
min(V )

(
‖p(A)r(k)‖+ ‖p(A)(I − V V ∗)r(k)‖

)
,
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where σmin is the smallest singular value of V .

Since the last inequality holds for any polynomial p(z) ∈ Pm, it also holds for

p(z) = pk(z), where pk(z) is the polynomial constructed at the cycle GMRES(A,

m, r(k)). Hence,

‖r̂(k)‖ ≤ 1

σ2
min(V )

(
‖r(k+1)‖+ ‖pk(A)(I − V V ∗)r(k)‖

)
.

Setting α = 1
σ2
min(V )

, βk = ‖pk(A)(I − V V ∗)r(k)‖, and observing that α −→ 1,

βk −→ 0 as V ∗V −→ I, from (2.15) we obtain (2.21).

2.2 Any admissible cycle-convergence behavior is possible for the

restarted GMRES at its initial cycles

In the previous section, we have characterized the cycle-convergence of the

restarted GMRES applied to system of linear equations (2.1) with a normal

coefficient matrix. Now we turn our attention to the general case. The main

result of the current section is stated as the following

Theorem 2.11 Let us be given an integer n > 0, a restart parameter m (0 <

m < n), and a positive sequence {f(k)}qk=0, such that f(0) > f(1) > · · · >

f(s) > 0, and f(s) = f(s + 1) = . . . = f(q), where 0 < q < n/m, 0 ≤ s ≤ q.

There exists an n-by-n matrix A and a vector r(0) with ‖r(0)‖ = f(0), such that

‖r(k)‖ = f(k), k = 1, . . . , q, where r(k) is the residual at cycle k of restarted

GMRES with restart parameter m applied to the linear system Ax = b, with

initial residual r(0) = b − Ax(0). Moreover, the matrix A can be chosen to have

any desired (nonzero) eigenvalues.

The full GMRES has a nonincreasing convergence for any i ≥ 0, f(i) ≥

f(i + 1) and it computes the exact solution in at most n steps (f(n) = 0).
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We note that the assumptions on {f(k)}n−1
k=1 in Theorem 2.2 do not cover the

class of convergence sequences corresponding to the convergence to the exact

solution before step n. One can see, however, that these assumptions are suffi-

cient to conclude that the theorem holds in this case as well. In this sense it is

remarkable that Greenbaum, Pták, and Strakoš are able to prove that any ad-

missible convergence behavior is possible for the full GMRES at its n steps. At

the same time we would like to note that the cycle-convergence of the restarted

GMRES can have two admissible scenarios: either f(i) > f(i + 1) for any i,

in other words, the cycle-convergence is (strictly) decreasing; or there exists s

such that f(i) > f(i + 1) for any i < s, and then f(i) = f(s) for any i > s,

in other words, if the restarted GMRES stagnates at cycle s + 1, it stagnates

forever. Thus assumptions on {f(k)}qk=0 in Theorem 2.11 reflect any admissible

cycle-convergence behavior of restarted GMRES at the first q cycles, except for

the case where the convergence to the exact solution happens within these q

cycles. It turns out that the assumptions are sufficient to guarantee that The-

orem 2.11 also holds in the above mentioned case of “early” convergence. In

Subsection 2.2.6, we point out how exactly the assumptions of Theorem 2.2 and

Theorem 2.11 allow us to conclude that any admissible convergence behavior is

possible for the full and restarted GMRES (at its q initial cycles).

As mentioned above, the maximum number of iterations of the full GMRES

is at most n, and the method delivers the exact solution in a finite number of

steps. The restarted GMRES, however, may never provide the exact solution.

It (hopefully) decreases the residual norm at each cycle, that is, provides a more

and more accurate approximation to the exact solution. With n2 parameters
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in A and n parameters in b we are not able to control the convergence for an

infinite amount of cycles. For this reason, we consider only the first q < n/m

initial GMRES(m) cycles. We note that, in practice, n >> m so q is relatively

large.

The rest of this section concerns the proof of Theorem 2.11. The proof we

provide is constructive and directly inspired by the article of Greenbaum, Pták,

and Strakoš [34]. Although Greenbaum, Pták, and Strakoš laid the path, there

are several specific difficulties ahead in the analysis of the restarted GMRES.

Let n be a matrix order and m a restart parameter (m < n), Λ =

{λ1, λ2, . . . λn} ⊂ C\{0} be a set of n nonzero complex numbers, and {f(k)}qk=0

be a positive sequence, such that f(0) > f(1) > · · · > f(s) > 0 and

f(s) = f(s+ 1) = . . . = f(q), where 0 < q < n/m, 0 ≤ s ≤ q.

In this section we construct a matrix A ∈ Cn×n and an initial residual vector

r(0) = b − Ax(0) ∈ Cn such that GMRES(m) applied to system (2.1) with the

initial approximate solution x(0), produces a sequence {x(k)}qk=1 of approximate

solutions with corresponding residual vectors {r(k)}qk=0 having the prescribed

norms: ‖r(k)‖ = f(k). Moreover the spectrum of A is Λ.

For clarity, we first restrict our attention to the case of the strictly de-

creasing cycle-convergence, and, in Section 2.2.2, prove Theorem 2.11 under the

assumption that f(0) > f(1) > · · · > f(q) > 0 (i.e., we assume that s = q).

Next, in Section 2.2.3, we complete the proof of Theorem 2.11 by handling

the (remaining) case of stagnation, i.e., f(0) > f(1) > · · · > f(s) > 0 and

f(s) = f(s+ 1) = . . . = f(q), 0 ≤ s < q. This is done by a slight change in the

proof for the considered case of the strictly decreasing cycle-convergence.
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2.2.1 Outline of the proof of Theorem 2.11

The general approach described in this paper is similar to the approach of

Greenbaum, Pták, and Strakoš [34]: we fix an initial residual vector, construct

an appropriate basis of Cn, and use this basis to define a linear operator A.

This operator is represented by the matrix A in the canonical basis. It has the

prescribed spectrum and provides the desired cycle-convergence at the first q

cycles of GMRES(m). However, the presence of restarts somewhat complicates

the construction: the choice of the basis vectors, as well as the structure of the

resulting operator A, becomes less transparent. Below we briefly describe our

three-step construction for the case of the strictly decreasing cycle-convergence

and then suggest its easy modification to prove the general case, which includes

stagnation.

At the first step we construct q sets of vectors W(k)
m = {w(k)

1 , . . . , w
(k)
m },

k = 1, . . . , q, each set W(k)
m is the orthonormal basis of the Krylov residual

subspace AKm
(
A, r(k−1)

)
generated at the k-th GMRES(m) cycle such that

span W(k)
j = AKj

(
A, r(k−1)

)
, j = 1, . . . ,m. (2.22)

The orthonormal basisW(k)
m needs to be chosen in order to generate residual

vectors r(k) with the prescribed (strictly decreasing) norms f(k) at the end of

each cycle subject to the additional requirement that the set of mq + 1(≤ n)

vectors

S = {r(0), w
(1)
1 , . . . , w

(1)
m−1, r

(1), w
(2)
1 , . . . , w

(2)
m−1, . . . , r

(q−1), w
(q)
1 , . . . , w

(q)
m−1, r

(q)}

(2.23)

is linearly independent.
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Once we have the set S, we will complete it to have a basis for Cn. If the

number of vectors in S is less than n, a basis S of Cn is obtained by completion

of S with a set Ŝ of n −mq − 1 vectors, i.e., S = {S, Ŝ}. This will provide a

representation of Cn as the direct sum

Cn = span S = span{r(0),W(1)
m−1} ⊕ · · · ⊕ span{r(q−1),W(q)

m−1} ⊕ span{r(q), Ŝ}.

(2.24)

The latter translates in terms of Krylov subspaces into

Cn = span S = Km
(
A, r(0)

)
⊕ · · · ⊕ Km

(
A, r(q−1)

)
⊕ span{r(q), Ŝ}.

At the second step of our construction, we define a linear operator A :

Cn −→ Cn with spectrum Λ which generates the Krylov residual subspaces in

(2.22) at each GMRES(m) cycle, by its action on the basis vectors S, such that

the desired matrix A is the operator A’s representation in the canonical basis.

The third step accomplishes the construction by a similarity transformation.

In the following subsection we show that this three-step approach indeed

allows us to prove Theorem 2.11 in the case of a strictly decreasing positive

sequence {f(k)}qk=0. In order to deal with the particular case of stagnation, i.e.,

f(0) > f(1) > · · · > f(s) > 0 and f(s) = f(s + 1) = . . . = f(q), we keep the

same framework but set q = s + 1 and redefine the vector r(q) (r(q) is the last

vector in (2.23)). More details are provided in Subsection 2.2.3.

2.2.2 Proof of Theorem 2.11 for the case of a strictly decreasing

cycle-convergence

Throughout this subsection we let the positive sequence {f(k)}qk=0 only to be

strictly decreasing. We also assume here that q = max {z ∈ Z : z < n/m}. This
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means that for the given n and m we perform our construction along the largest

number of initial cycles where we are able to determine A (having a prescribed

spectrum) and r(0) which provide the desired cycle-convergence. Although our

proof is formally valid for any 0 < q < n/m, the assumption emphasizes the

extent to which we can take control over the process. We note that any case

with q < max {z ∈ Z : z < n/m} can be extended to the one assumed above by

properly defining a number of additional elements in {f(k)}qk=0.

Step 1: Construction of a sequence of Krylov subspaces which provide

the prescribed cycle-convergence

At the kth GMRES(m) cycle, the residual vector r(k) satisfies minimality

condition (2.3). We assume that each set W(k)
m is an orthonormal basis of a cor-

responding Krylov residual subspace AKm
(
A, r(k−1)

)
, therefore condition (2.3)

implies

r(k) = r(k−1) −
m∑
j=1

(r(k−1), w
(k)
j )w

(k)
j , k = 1, . . . , q. (2.25)

At this stage, in order to simplify the forthcoming justification of the linear

independence of the set S, we impose a stricter requirement on the residual

change inside the cycle. We require that the residual vector r(k−1) remains

constant during the first m − 1 inner steps of GMRES and is reduced only at

the last, mth, step. Thus, the equality in (2.25) can be written as

r(k) = r(k−1) − (r(k−1), w(k)
m )w(k)

m , k = 1, . . . , q. (2.26)
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This implies that the vectors w
(k)
j , j = 1, . . . ,m − 1, are orthogonal to the

residual vector r(k−1), i.e.,

(r(k−1), w
(k)
j ) = 0, j = 1, . . . ,m− 1, k = 1, . . . , q. (2.27)

From (2.26), using the fact that r(k) ⊥ w
(k)
m and the Pythagorean theorem,

we obtain

|(r(k−1), w(k)
m )| =

√
‖r(k−1)‖2 − ‖r(k)‖2, k = 1, . . . , q.

By defining (acute) angles ψk ≡ ∠(r(k−1), w(k)
m ) and the corresponding cosines

cosψk ≡ |(r(k−1),w
(k)
m )|

‖r(k−1)‖ , we can equivalently rewrite the identity above in the fol-

lowing form:

cosψk =

√
f(k − 1)2 − f(k)2

f(k − 1)
∈ (0, 1), k = 1, . . . , q, (2.28)

where f(k − 1) and f(k) are the prescribed values for the norm of the residual

vectors r(k−1) and r(k), respectively. Thus, if we are given r(k−1), one way to

ensure the desired cycle-convergence at cycle k of GMRES(m) is to choose the

unit vectors w
(k)
j such that (2.26)–(2.28) holds.

In the following lemma, we show constructively that the described approach

(2.26)–(2.28) leads to an appropriate set S.

Lemma 2.12 Given a strictly decreasing positive sequence {f(k)}qk=0 and an

initial vector r(0), ‖r(0)‖ = f(0), there exist vectors r(k), ‖r(k)‖ = f(k) and

orthonormal sets W(k)
m such that (2.26), (2.27), and (2.28) hold, and the set S

in (2.23) is linearly independent, k = 1, . . . , q.
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Proof: The proof is by induction. Let k = 1. Given the initial vector r(0),

‖r(0)‖ = f(0), we pick W(1)
m−1 = {w(1)

1 , . . . , w
(1)
m−1} an orthonormal set in r(0)⊥ in

order to satisfy equalities (2.27). The set {r(0),W(1)
m−1} is linearly independent.

In order to choose the unit vector w
(1)
m orthogonal to the previously con-

structed vectors W(1)
m−1 and satisfying (2.28), we introduce a unit vector y(1) ∈

{r(0),W(1)
m−1}⊥, so that

w(1)
m =

r(0)

f(0)
cosψ1 + y(1)sinψ1.

We find the vector r(1) by satisfying (2.26). Equality (2.28) guarantees that

‖r(1)‖ = f(1), as desired. Finally, we append the constructed vector r(1) to

{r(0),W(1)
m−1} and get the set {r(0),W(1)

m−1, r
(1)}, which is linearly independent,

since, by construction, r(1) is not in span{r(0),W(1)
m−1}.

The induction assumption is that we have already constructed k− 1 vectors

r(1), . . . , r(k−1) with the prescribed norms f(1), . . . , f(k − 1) and orthonormal

sets W(1)
m , . . . ,W(k−1)

m , such that equalities (2.26), (2.27) and (2.28) hold, and

the set

{r(0),W(1)
m−1, . . . , r

(k−2),W(k−1)
m−1 , r

(k−1)} (2.29)

is linearly independent. We want to show that we can construct the next vec-

tor r(k), ‖r(k)‖ = f(k), and the orthonormal set W(k)
m , satisfying (2.26), (2.27)

and (2.28), such that

{r(0),W(1)
m−1, . . . , r

(k−2),W(k−1)
m−1 , r

(k−1),W(k)
m−1, r

(k)} (2.30)

is linearly independent, k ≤ q.

We start by constructing orthonormal vectors W(k)
m−1 = {w(k)

1 , . . . , w
(k)
m−1},

satisfying (2.27), with the additional requirement that the set W(k)
m−1 is not
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in the span of the previously constructed vectors given in set (2.29). From

these considerations, we choose W(k)
m−1 as an orthonormal set in the orthogonal

complement of (2.29), i.e.,

w
(k)
j ∈ {r(0),W(1)

m−1, . . . , r
(k−2),W(k−1)

m−1 , r
(k−1)}⊥, j = 1, . . . ,m− 1.

Appending W(k)
m−1 to the set (2.29) gives a linearly independent set.

To finish the proof, we need to construct the vector w
(k)
m , satisfying (2.28)

and orthogonal to W(k)
m−1. For this reason we introduce a unit vector y(k),

y(k) ∈ {r(0),W(1)
m−1, . . . , r

(k−2),W(k−1)
m−1 , r

(k−1),W(k)
m−1}⊥,

so that

w(k)
m =

r(k−1)

f(k − 1)
cosψk + y(k)sinψk,

where cosψk ≡ |(r(k−1),w
(k)
m )|

‖r(k−1)‖ .

We define the vector r(k) with (2.26). Equality (2.28) guarantees ‖r(k)‖ =

f(k). Set (2.30) is linearly independent, since, by construction, the vector r(k)

is not in span{r(0),W(1)
m−1, . . . , r

(k−2),W(k−1)
m−1 , r

(k−1),W(k)
m−1}.

Step 2: Definition of a linear operator with any prescribed spectrum

So far we have shown that, given a strictly decreasing positive sequence

{f(k)}qk=0 and an initial residual vector r(0), ‖r(0)‖ = f(0), it is possible to con-

struct vectors r(k), ‖r(k)‖ = f(k), and orthonormal vectors W(k)
m , k = 1, . . . , q,

satisfying equalities (2.26), (2.27) and (2.28), such that the set S of mq + 1

vectors in (2.23) is linearly independent.

In order to define a (representation of) unique linear operator, we need

to have a valid basis of Cn at hand. Thus, we expand the set S by linearly
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independent vectors Ŝ = {ŝ1, . . . , ŝt}, t = n − mq − 1 (< m, since we have

assumed that q = max {z ∈ Z : z < n/m}):

S = {r(0),W(1)
m−1, . . . , r

(q−1),W(q)
m−1, r

(q), ŝ1, . . . , ŝt}, (2.31)

so that S is a basis of Cn.

Before we define a linear operator A, let us consider the set

Λ = {λ1, λ2, . . . , λn}

of nonzero numbers in the complex plane that defines the spectrum of A. We

split Λ into q + 1 disjoint subsets

Λ = {Λ1,Λ2, . . . ,Λq,Λq+1}, (2.32)

such that each Λk, k = 1, . . . , q, contains m elements of Λ, and the remaining

n−mq elements are included into Λq+1.

For each set Λk, k = 1, . . . , q, we define a monic polynomial pk(x), such that

the roots of this polynomial are exactly the elements of the corresponding Λk:

pk(x) = xm −
m−1∑
j=0

α
(k)
j xj, k = 1, . . . , q, (2.33)

with α
(k)
j ’s being the coefficients of the respective polynomials, α

(k)
0 6= 0. Each

polynomial pk(x) in (2.33) can be thought of as the characteristic polynomial of

an m-by-m matrix with spectrum Λk.

Let us also introduce an arbitrary (t + 1)-by-(t + 1) matrix C with the

spectrum Λq+1:

C = (βij) , Λ(C) = Λq+1, i, j = 1, . . . , t+ 1 = n−mq. (2.34)
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We define the operator A : Cn −→ Cn as follows:

Ar(k−1) =w
(k)
1 ,

Aw(k)
1 =w

(k)
2 ,

...

Aw(k)
m−2 =w

(k)
m−1,

Aw(k)
m−1 =−α(k)

0 r(k) + α
(k)
0 r(k−1) + α

(k)
1 w

(k)
1 + · · ·+ α

(k)
m−1w

(k)
m−1, k = 1, . . . q;

Ar(q) = β11r
(q) + β21ŝ1 + · · ·+ βt+1,1ŝt,

Aŝ1 = β12r
(q) + β22ŝ1 + · · ·+ βt+1,2ŝt,

... (2.35)

Aŝt = β1,t+1r
(q) + β2,t+1ŝ1 + · · ·+ βt+1,t+1ŝt,

where α
(k)
j ’s are the coefficients of polynomials (2.33) and βij’s are the elements

of the matrix C in (2.34).

The following lemma shows that, given vectors r(k) and orthonormal sets

W(k)
m constructed according to Lemma 2.12, the linear operator A, defined by

(2.35) and represented by a matrix A in the canonical basis, generates the desired

Krylov residual subspaces given in (2.22); and the spectrum of A can be chosen

arbitrarily.

Lemma 2.13 Let the initial residual vector r(0), ‖r(0)‖ = f(0), as well as

the residual vectors r(k) and orthonormal sets W(k)
m be constructed according to

Lemma 2.12. Let S be the basis of Cn as defined by (2.31) and Λ be an arbitrary

set of n nonzero complex numbers. Then the linear operator A defined according

to (2.32)–(2.35) generates the Krylov residual subspaces given in (2.22), where
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the matrix A is a representation of A in the canonical basis. Moreover, the

spectrum of A is Λ.

Proof: From definition (2.35) of the linear operator A one can notice that

Ar(k−1) =w
(k)
1 ,

A2r(k−1) =w
(k)
2 ,

...

Am−1r(k−1) =w
(k)
m−1,

Amr(k−1) =−α(k)
0 r(k) + α

(k)
0 r(k−1) + α

(k)
1 w

(k)
1 + · · ·+ α

(k)
m−1w

(k)
m−1, k = 1, . . . q.

Since, by construction in Lemma 2.12, i.e., equality (2.26),

0 6= −α(k)
0 r(k) + α

(k)
0 r(k−1) ∈ span{w(k)

m },

the above relations immediately imply that for each k = 1, . . . q,

span{Ar(k−1), . . . ,Ajr(k−1)} = span W(k)
j , j = 1, . . . ,m.

Thus, given the representation A of the linear operator A in the canonical basis,

we have proved that A generates the Krylov residual subspaces given in (2.22).
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To prove that an arbitrarily chosen set Λ can be the spectrum of A, let us

consider the matrix [A]S of the operator A in the basis S (see (2.31) and (2.35)):

[A]S =



0 0 · · · 0 α
(1)
0

1 0 · · · 0 α
(1)
1

0 1 · · · 0 α
(1)
2

...
...

. . .
...

... 0

0 0 · · · 1 α
(1)
m−1

−α(1)
0

. . .

. . . . . .

−α(q−1)
0 0 0 · · · 0 α

(q)
0

1 0 · · · 0 α
(q)
1

0 1 · · · 0 α
(q)
2

...
...

. . .
...

...

0 0 0 · · · 1 α
(q)
m−1

−α(q)
0 β11 · · · β1,t+1

...
. . .

...

βt+1,1 · · · βt+1,t+1



. (2.36)

The matrix [A]S has a block lower triangular structure, hence the spectrum

of [A]S is a union of eigenvalues of all diagonal blocks. The first q blocks are

the companion matrices corresponding to the sets Λk, k = 1, . . . , q, with char-

acteristic polynomials defined in (2.33). The last block is exactly the matrix

C = (βij) from (2.34) with the spectrum Λq+1. Thus, given partition (2.32) of

the set Λ, we conclude that spectrum of A is Λ.
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Step 3: Conclusion of the proof of Theorem 2.11 for the case of

the strictly decreasing cycle-convergence

Finally, we define A as the representation of the operator A in the canonical

basis E = {e1, e2, . . . , en},

A = S [A]S S
−1, (2.37)

where the square matrix S is formed by the vectors given in (2.31) written

as columns and [A]S is defined by (2.36). The constructed matrix A pro-

vides the prescribed (strictly decreasing) norms of residual vectors at the first

q GMRES(m) cycles if starting with r(0) and its spectrum is Λ. We note that

the field over which the resulting matrix is defined depends heavily on the par-

tition (2.32) of the set Λ, e.g., A turns out to be (non-Hermitian) complex if a

conjugate pair from Λ is not included into the same subset Λk.

2.2.3 Extension to the case of stagnation

In the previous subsection, we have proved Theorem 2.11 only for the case

of the strictly decreasing positive sequence {f(k)}qk=0. Now, in order to conclude

the rest of Theorem 2.11, we consider the case of stagnation: f(0) > f(1) >

· · · > f(s) > 0 and f(s) = f(s + 1) = . . . = f(q). The latter fits well (after a

minor modification) into the framework presented above.

Let us set q = s + 1 and, without loss of generality, reduce the problem to

constructing a matrix A with a spectrum Λ and an initial residual vector r(0),

‖r(0)‖ = f(0), for which GMRES(m) produces the following sequence of residual

norms: f(0) > f(1) > · · · > f(q− 1) = f(q) > 0. We observe that the sequence

is strictly decreasing up to the last cycle q. Thus, by Lemma 2.12, at the initial
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q − 1(= s) cycles we are able to construct sets W(k)
m and vectors r(k), such that

‖r(k)‖ = f(k) and the set

{r(0),W(1)
m−1, . . . , r

(q−1),W(q−1)
m−1 , r

(q−1)} (2.38)

is linearly independent. Then, formally following the construction in Lemma 2.12

at the cycle q, we get orthonormal set W(q)
m from the orthogonal complement

of (2.38) and the residual vector r(q) = r(q−1). This leads to set (2.23), which is

no longer linearly independent due to the above mentioned equality of residual

vectors. To enforce the linear independence we substitute in (2.23) the “incon-

venient” vector r(q) by w
(q)
m + r(q−1) and obtain the set

{r(0),W(1)
m−1, . . . , r

(q−2),W(q−1)
m−1 , r

(q−1),W(q)
m−1, w

(q)
m + r(q−1)}, (2.39)

which is linearly independent, due to the fact that the orthonormal set W(q)
m is

chosen, by construction, from the orthogonal complement of (2.38).

The rest of the proof exactly follows the pattern described in Subsection 2.2.2

with r(q) replaced by w
(q)
m + r(q−1), q = s + 1; see (2.31)–(2.37). The resulting

matrix A has the prescribed spectrum Λ and with the initial residual vector

r(0), ‖r(0)‖ = f(0), provides the desired cycle-convergence of GMRES(m) with

a stagnation starting after cycle s.

This concludes the proof of Theorem 2.11. In what follows we suggest several

remarks and generalizations related to the result.

2.2.4 Difference with the work of Greenbaum, Pták, and Strakoš [34]

For the reader familiar with the work of Greenbaum, Pták, and Strakoš [34],

it might be tempting to obtain the present result by pursuing the following

scheme: fix r(0) and then consider the first restarted GMRES cycle as the initial
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part of a full GMRES run where the convergence is prescribed for the first m it-

erations (and set arbitrarily for the remaining n−m iterations). Then, similarly,

given the starting residual vector r(1) provided by this first cycle, construct the

next Krylov residual subspace, which provides the desired convergence following

the scheme of Greenbaum, Pták, and Strakoš [34]. Proceed identically for the

remaining cycles. This approach, however, does not guarantee the linear inde-

pendence of the set S in (2.23) and, hence, one meets the problem of defining

the linear operator A. These considerations have been the reason for assump-

tions (2.26), (2.27) on the residual reduction inside a cycle, which have allowed

us to quite easily justify the linear independence of the set S and to control the

spectrum, as well.

2.2.5 Generating examples with nonzero rq+1

We note from definition (2.35) of the operator A in Subsection 2.2.2 that

span
{
r(q), ŝ1, . . . , ŝt

}
is an invariant subspace of A and, hence,

r(q) ∈ AKt+1

(
A, r(q)

)
,

where A is the representation of the operator A in the canonical basis and

t = n −mq − 1 (< m, by the assumption that q = max {z ∈ Z : z < n/m} at

the beginning of Subsection 2.2.2). This implies that at the end of the (q+ 1)st

cycle GMRES(m) converges to the exact solution of system (2.1), i.e., r(q+1) = 0.

This fact might seem unnatural and undesirable, e.g., for constructing theoretical

examples. The “drawback”, however, can be easily fixed by a slight correction

of the basis S in (2.31)—somewhat similarly to how we handled the stagnation

case in Theorem 2.11.
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Given residuals r(k) and orthonormal sets W(k)
m constructed according to

Lemma 2.12, instead of considering the set S, we consider the following basis of

Cn:

S̃ = {r(0), w
(1)
1 , . . . , w

(1)
m−1, . . . , r

(q−1), w
(q)
1 , . . . , w

(q)
m−1, r

(q) + γr(q−1), ŝ1, . . . , ŝt},

(2.40)

where γ 6= −1, 0. Here we substituted the basis vector r(q) in (2.31) by r(q) +

γr(q−1). The vector r(q)+γr(q−1) cannot be represented as a linear combination of

other vectors in S̃, since it contains the component r(q), which is not represented

by these vectors. Hence, S̃ is indeed a basis of Cn. Thus we can define the

operator A by its action on S̃:

Ar(k−1) =w
(k)
1 ,

Aw(k)
1 =w

(k)
2 ,

...

Aw(k)
m−2 =w

(k)
m−1,

Aw(k)
m−1 =−α(k)

0 r(k) + α
(k)
0 r(k−1) + α

(k)
1 w

(k)
1 + · · ·+ α

(k)
m−1w

(k)
m−1,

k = 1, . . . , q − 1;
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Ar(q−1) =w
(q)
1 ,

Aw(q)
1 =w

(q)
2 ,

... (2.41)

Aw(q)
m−2 =w

(q)
m−1,

Aw(q)
m−1 =

−α(q)
0

1 + γ
(r(q) + γr(q−1)) + α

(q)
0 r(q−1)

+ α
(q)
1 w

(q)
1 + · · ·+ α

(q)
m−1w

(q)
m−1,

A(r(q) + γr(q−1)) = β11(r(q) + γr(q−1)) + β21ŝ1 + · · ·+ βt+1,1ŝt,

Aŝ1 = β12(r(q) + γr(q−1)) + β22ŝ1 + · · ·+ βt+1,2ŝt,

...

Aŝt = β1,t+1(r(q) + γr(q−1)) + β2,t+1ŝ1 + · · ·+ βt+1,t+1ŝt,

where α
(k)
j ’s are the coefficients of the corresponding characteristic polynomials

(2.33) and βij’s are the elements of the matrix C in (2.34). The fact that the

operator A produces the correct Krylov residual subspace at the cycle q, i.e.,

span{Ar(q−1), . . . ,Amr(q−1)} = span W(q)
m ,

can be observed from the following equalities:

Aw(q)
m−1 =

−α(q)
0

1 + γ
(r(q) + γr(q−1)) + α

(q)
0 r(q−1) + α

(q)
1 w

(q)
1 + · · ·+ α

(q)
m−1w

(q)
m−1

=
−α(q)

0

1 + γ
(r(q) − r(q−1) + (1 + γ)r(q−1)) + α

(q)
0 r(q−1)

+ α
(q)
1 w

(q)
1 + · · ·+ α

(q)
m−1w

(q)
m−1

=
−α(q)

0

1 + γ
(r(q) − r(q−1)) + α

(q)
1 w

(q)
1 + · · ·+ α

(q)
m−1w

(q)
m−1,

where, by (2.41), Aw(q)
m−1 = Amr(q−1) and, by (2.26), 0 6= r(q) − r(q−1) ∈

span{w(q)
m }.
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The matrix [A]S̃ of the operator A, defined by (2.41), in the basis S̃ is

identical to (2.36), with the only change of the subdiagonal element −α(q)
0 to

−α(q)
0

1+γ
, γ 6= −1, 0. Hence, A has the desired spectrum Λ. The representation A

of the operator A in the canonical basis is then determined by the similarity

transformation in (2.37), with the matrix S formed by vectors from S̃ in (2.40)

written as columns.

Finally, to see that the residual vector r(q+1) is generally nonzero with the

new definition of the operator A, we notice from (2.41) that now

span
{
r(q) + γr(q−1), ŝ1, . . . , ŝt

}
is an invariant subspace of A and, hence,

r(q) + γr(q−1) ∈ AKt+1

(
A, r(q) + γr(q−1)

)
, γ 6= −1, 0,

or,

r(q) ∈ AKt+1

(
A, r(q)

)
+Kt+2

(
A, r(q−1)

)
, (2.42)

where t+1 ≤ m by the assumption that q = max {z ∈ Z : z < n/m}. Due to the

fact that r(q+1) = 0 if and only if r(q) ∈ AKm
(
A, r(q)

)
, it suffices to show that the

component of the vector r(q) from Kt+2

(
A, r(q−1)

)
in representation (2.42) does

not generally belong to AKm
(
A, r(q)

)
. To show this, we observe, since γ 6= 0,

that the term from Kt+2

(
A, r(q−1)

)
in (2.42) contains a nonzero component in

the direction r(q−1), which is not in AKm
(
A, r(q)

)
unless the initial residual r(0)

is chosen from a specific subspace of Cn, i.e., expressing r(q−1) in terms of r(0)

and vectors w
(k)
m by (2.26),
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r(0) /∈ I, I = span
{
w(1)
m , . . . , w(q−1)

m

}
+ AKm

(
A, r(q)

)
,

where dim I ≤ q +m− 1 < n/m+m− 1 ≤ n, provided that 0 < m < n.

2.2.6 Any admissible convergence behavior is possible for full and

restarted GMRES (at its q initial cycles)

As we pointed out at the beginning of the current section, the conver-

gence behavior of the full GMRES in Theorem 2.2 is restricted to the class

of convergence sequences which allow convergence to the exact solution only at

step n, i.e., f(0) ≥ f(1) ≥ · · · ≥ f(n − 1) > 0 (f(n) = 0). Similarly, the

cycle-convergence behavior of restarted GMRES in Theorem 2.11 is restricted

to cycle-convergence sequences which exclude the possibility of convergence to

the exact solution within the initial q cycles, i.e., f(0) > f(1) > · · · > f(s) > 0

and f(s) = f(s + 1) = . . . = f(q). It turns out that the assumptions in

Theorem 2.2 and Theorem 2.11 are sufficient for the theorems also to hold if

f(0) ≥ f(1) ≥ · · · ≥ f(n − 1) ≥ 0 and f(0) > f(1) > · · · > f(s) ≥ 0,

f(s) = f(s+ 1) = . . . = f(q), respectively.

Given an integer n > 0, assume that we want to construct an n-by-n matrix

A with a prescribed spectrum Λ and an initial residual vector r(0) (or, equiva-

lently, a right-hand side b, since r(0) = b after setting x(0) to 0) such that the

full GMRES applied to the corresponding system (2.1) results in the following

convergence pattern: f(0) ≥ f(1) ≥ · · · ≥ f(s − 1) > f(s) = f(s + 1) = · · · =

f(n − 1) = 0, s < n, ‖rk‖ = f(k). The construction is straight-forward. We

first split the set Λ into two disjoint subsets, say, Λ = Λs ∪ Λn−s, where Λs

contains s elements from Λ while the remaining n−s elements are included into
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Λn−s. Next, by Theorem 2.2 we construct a matrix As ∈ Cs×s and a right-hand

side bs ∈ Cs (x(0) = 0 ∈ Cs), such that the full GMRES applied to the system

Asx = bs produces the convergence sequence f(0) ≥ f(1) ≥ · · · ≥ f(s− 1) > 0

(f(s) = 0), moreover the spectrum of As is Λs. Finally, we define the resulting

matrix A ∈ Cn×n and the right-hand side vector b ∈ Cn (x(0) = 0 ∈ Cn) as

follows:

A =

As 0

0 An−s

 , b =

bs
0

 , (2.43)

where An−s ∈ C(n−s)×(n−s) is an arbitrary matrix with a spectrum Λn−s. It is

easy to see that the full GMRES applied to the system of equations defined by

(2.43) produces the desired sequence of residual norms f(0) ≥ f(1) ≥ · · · ≥

f(s−1) > f(s) = f(s+1) = · · · = f(n−1) = 0, ‖r(k)‖ = f(k), r(0) = b. Clearly

the matrix A in (2.43) has the prescribed spectrum Λ = Λs ∪ Λn−s.

For the restarted GMRES the construction of a matrix A with the spectrum

Λ and a right-hand side b (x(0) = 0) that provide the cycle-convergence sequence

f(0) > f(1) > · · · > f(s− 1) > f(s) = f(s + 1) = . . . = f(q) = 0 is analogous,

s ≤ q, ‖r(k)‖ = f(k). Following Theorem 2.11, one constructs a matrix As ∈

Cms×ms and a right-hand side vector bs ∈ Cms, such that the GMRES(m) applied

to the corresponding linear system produces the cycle-convergence curve f(0) >

f(1) > · · · > f(s−1) > f(s) = 0. The spectrum of As is chosen to coincide with

a subset of ms elements of Λ. The construction of the matrix A ∈ Cn×n and the

right-hand side b ∈ Cn is then accomplished by introducing an (n−ms)×(n−ms)

diagonal block with eigenvalues from Λ, which are not in the spectrum of As,

and expanding the vector b with (n−ms) zeros, similarly to (2.43).
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2.2.7 Restarted GMRES with variable restart parameter

The result of Theorem 2.11 can be generalized to the case where the restart

parameter m is not fixed, but varies over successive cycles according to an a

priori prescribed parameter sequence {mk}qk=1. The proof, basically, repeats

the one in Subsection 2.2.2 with the difference that the constructed operator

A in the corresponding basis has block lower triangular structure with varying

diagonal block sizes mk, rather than the constant size mk = m as in (2.36).

Corollary 2.14 Let us be given an integer n > 0, a sequence {mk}qk=1, 0 <

mk < n, and a positive sequence {f(k)}qk=0, such that f(0) > f(1) > · · · >

f(s) > 0 and f(s) = f(s + 1) = . . . = f(q), where q is defined by the condition
q∑

k=1

mk < n, 0 ≤ s ≤ q. There exists an n-by-n matrix A and a vector r(0) with

‖r(0)‖ = f(0) such that ‖r(k)‖ = f(k), k = 1, . . . , q, where r(k) is the residual

at cycle k of restarted GMRES with a restart parameter varying according to

the sequence {mk}qk=1 applied to the linear system Ax = b, with initial residual

r(0) = b − Ax(0). Moreover, the matrix A can be chosen to have any desired

(nonzero) eigenvalues.

2.3 Conclusions

In this chapter we have established several results which address the cycle-

convergence behavior of the restarted GMRES. First, we have proved that the

cycle-convergence of the method applied to a system of linear equations with a

normal coefficient matrix is sublinear, and at best linear. Second, in the general

case, we have shown that any admissible cycle-convergence behavior is possible
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for the restarted GMRES at q initial cycles, regardless of the eigenvalue distri-

bution of the coefficient matrix. This leads to the conclusion that no estimates,

which rely solely on the matrix spectrum, can be derived to characterize the

cycle-convergence of restarted GMRES at the first q cycles if the method is

applied to a linear system with a general nonsingular non-Hermitian matrix.

Though in practice q tends to be reasonably large (q < n/m), it remains an

open question if the above mentioned estimates hold at cycles which follow the

n/m-th GMRES(m) cycle.
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3. Solution of symmetric indefinite systems with symmetric positive

definite preconditioners

We consider a system of linear equations

Ax = b, A = A∗ ∈ Rn×n, b ∈ Rn, (3.1)

where the coefficient matrix A is nonsingular and symmetric indefinite, i.e., the

spectrum of A contains both positive and negative eigenvalues.

Linear systems with large, possibly sparse, symmetric indefinite coefficient

matrices arise in a variety of applications. For example, in the form of saddle

point problems (see [10] and references therein), such systems may result from

mixed finite element discretizations of underlying differential equations of fluid

and solid mechanics. In acoustics, large sparse symmetric indefinite systems may

be obtained after discretizing the Helmholtz equation [69] for certain media types

and boundary conditions. Sometimes the need of solving the indefinite problem

(3.1) comes as an auxiliary task within other computational routines, e.g., inner

Newton step in the interior point methods in linear and nonlinear optimization,

see [53], or solution of the correction equation in the Jacobi-Davidson method

[64] for a symmetric eigenvalue problem.

Because of the large problem size, direct methods for solving linear sys-

tems may become infeasible, which motivates the use of iterative techniques for

finding satisfactory approximations to the exact solutions. There is a number

of iterative methods developed specifically to solve symmetric indefinite sys-

tems, ranging from modifications of the Richardson’s iteration, e.g., [51, 58, 16],
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to optimal Krylov subspace methods, see [33, 59]. It is known, however, that

in practical problems the coefficient matrix A in (3.1) may be extremely ill-

conditioned which, along with the location of the spectrum of A to both sides

of the origin, can make the straightforward application of the existing schemes

inefficient due to a slow convergence rate. In order to improve the convergence,

one can introduce a matrix T ∈ Rn×n and consider the preconditioned system

TAx = Tb. (3.2)

If T is not symmetric positive definite (SPD), the matrix TA of the pre-

conditioned system (3.2), in general, is not symmetric with respect to any inner

product, implying that the specialized methods for solving symmetric indefinite

systems are no longer applicable and need to be replaced by methods for solving

nonsymmetric systems, e.g., one of the Krylov subspace methods: GMRES or

GMRES(m), BiCG, BiCGstab, QMR, etc (see, e.g., [33, 59]). Though known

to be effective for a number of applications, this approach can have several dis-

advantages. First, in order to maintain the optimality of a Krylov subspace

method, one has to allow the increase of the computational work at every new

iteration, which can become prohibitive for large problems. Second, the conver-

gence behavior of methods for solving nonsymmetric systems may not rely on

possibly accessible (estimated) quantities, such as, e.g., the spectrum of the coef-

ficient matrix (see the corresponding results for GMRES [34, 76]), which makes

it difficult or even impossible to estimate the computational costs a priori.

If T is chosen to be SPD (T = T ∗ > 0) then the matrix TA of precon-

ditioned system (3.2) remains symmetric indefinite, however, with respect to

the T−1–inner product, i.e., the inner product defined by (x, y)T−1 = (x, T−1y)
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for any x, y ∈ Rn, where (·, ·) denotes the Euclidean inner product, in which

the matrix A is symmetric. In particular, due to this symmetry preservation

(though in a different geometry), system (3.2) can be solved using an optimal

short-term recurrent Krylov subspace method, e.g., preconditioned MINRES

[55], or PMINRES, with the convergence behavior fully described in terms of

the (estimates of) spectrum of the preconditioned matrix TA. Therefore, in the

light of the discussion above, the choice of a properly defined SPD precondi-

tioner for solving a symmetric indefinite system can be regarded as natural and

favorable.

The goal of this chapter is twofold. First, we describe a hierarchy of meth-

ods, from a stationary iteration to an optimal Krylov subspace minimal residual

method, which allow solving symmetric indefinite linear system (3.1) with an

SPD preconditioner T . Second, we suggest a new strategy for constructing

SPD preconditioners for general symmetric indefinite systems being solved with

the described methods. Although the approaches, underlying the methods are

mostly known, e.g., the minimization of an appropriate norm of the residual

vector over a subspace, several of our observations seem to be new and are,

primarily, of a theoretical interest. In particular, we determine the smallest pos-

sible Krylov subspace, which can be used to properly restart the preconditioned

minimal residual method, applied to a symmetric indefinite linear system. For

example, this leads to a scheme which is a natural analogue of the preconditioned

steepest descent iteration for solving SPD systems. Independently of a particu-

lar implementation scheme, we state and prove simple convergence bounds, and

gain an insight into the structure of the local subspaces which determine a new
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approximation at each step of the selected method. The results of this chap-

ter will motivate the construction of trial subspaces and SPD preconditioners

for symmetric eigenvalue (with a targeted interior eigenpair) and singular value

problems in Chapter 4 and Chapter 5.

In Section 3.1, we present the simplest iterative scheme with stationary iter-

ation parameters for solving a symmetric indefinite system with an SPD precon-

ditioner. Other methods are obtained essentially by allowing to vary the parame-

ters at each step of this stationary iteration in a way that a preconditioner-based

norm of the residual vector is minimized. In Section 3.2, we present a notion of

the optimal SPD preconditioner for a symmetric indefinite system, and suggest

constructing preconditioners based on an approximation of the inverse of the

absolute value of the coefficient matrix (absolute value preconditioners). We

show on the example of a linear system with a discrete real Helmholtz operator

(shifted Laplacian) that such preconditioners can be constructed in practice.

Moreover, the use of the preconditioning techniques based, e.g., on multigrid

(MG), can make this construction efficient.

3.1 Iterative methods for symmetric indefinite systems with SPD

preconditioners

Given a (possibly nonsymmetric) matrix A ∈ Rn×n, an initial guess x(0) ∈

Rn, a (nonzero) iteration parameter α ∈ R, and a (possibly non-SPD) precon-

ditioner T ∈ Rn×n, the iteration of the form

x(i+1) = x(i) + αw(i), w(i) = Tr(i), r(i) = b− Ax(i), i = 0, 1, . . . ; (3.3)

where x(i) ∈ Rn is an approximation to the exact solution of system (3.1) at

iteration i, is commonly referred to as a preconditioned stationary iteration,
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or Richardson’s method with a stationary iteration parameter, see, e.g., [3, 33,

59]. We note that stationary iteration (3.3) can be considered as a simplest

iterative method for solving linear systems, and, if properly preconditioned, can

be efficient and computationally inexpensive.

In general, the (asymptotic) convergence rate of method (3.3) is governed

by the spectral radius of the iteration matrix M = I − αTA, where T and α

(sometimes skipped after replacing αT by T ) need to be chosen to make the

spectral radius of M strictly less than 1, see, e.g., [3, 33]. If both A and T are

SPD, one can always find a sufficiently small value of the step-size parameter

α > 0 to ensure that iteration (3.3) monotonically and linearly reduces the A-

norm of error. Moreover, α can be set to the value which provides an optimal

convergence rate for the method with an optimal convergence factor ρopt =

κ(TA)−1
κ(TA)+1

< 1, where the condition number κ(TA) is a ratio of the largest and the

smallest eigenvalues of the preconditioned matrix TA (for more details see, e.g.,

[3] ).

If A is symmetric indefinite and T is SPD, stationary iteration (3.3), in

general, diverges for any choice of the parameter α.

Proposition 3.1 Stationary iteration (3.3) applied to linear system (3.1) with

a symmetric indefinite matrix A and an SPD preconditioner T diverges for any

α, unless the initial guess x(0) is specifically chosen.

Proof: Let us consider the preconditioned residual, corresponding to iteration

(3.3):

Tr(i+1) = (I − αTA)i+1 Tr(0), i = 0, 1, . . . . (3.4)
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Since T is SPD and A is symmetric indefinite, the preconditioned matrix

TA is T−1-symmetric and indefinite with eigenpairs (λj, yj), where the (real)

eigenvalues λj are of both signs and the eigenvectors yj are T−1-orthonormal,

j = 1, . . . , n. Then the eigenpairs of the iteration matrix I − αTA are (µj, yj)

where µj = 1− αλj.

Let cj be the coordinates of the preconditioned initial residual vector Tr(0)

in the basis of the eigenvectors yj. Assume that the initial guess is chosen in

such a way that Tr(0) has at least two nontrivial components in the directions

of eigenvectors corresponding to eigenvalues of TA of the opposite sign. Then

we can always fix an eigenvalue λj∗ of the matrix TA such that sign(λj∗) =

−sign(α), for any (nonzero) α, and the vector Tr(0) has a nontrivial component

in the direction of yj∗ , i.e., cj∗ 6= 0. Thus, since the corresponding eigenvalue

µj∗ = 1−αλj∗ of I−αTA is strictly greater than 1, using identity (3.4) and the

Pythagorean theorem with respect to the T−1-inner product, we obtain:

‖r(i+1)‖2
T = ‖Tr(i+1)‖2

T−1 = ‖ (I − αTA)i+1 Tr(0)‖2
T−1

= ‖ (I − αTA)i+1
n∑
j=0

cjyj‖2
T−1 = ‖

n∑
j=0

µi+1
j cjyj‖2

T−1

=
n∑
j=0

(
µi+1
j cj

)2
>
(
µi+1
j∗ cj∗

)2 →∞,

as i → ∞. This proves the divergence of iteration (3.3) with A symmetric

indefinite and T SPD for any α, unless the initial guess x(0) is such that the

vector Tr0 has its nontrivial components only in the direction of eigenvectors

corresponding to eigenvalues of the same sign.

Since iteration (3.3) is not applicable for solving symmetric indefinite sys-

tems with SPD preconditioners, we further question what a correct way is to
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define a simple scheme with stationary iteration parameters, different from us-

ing method (3.3) for the normal equations, that can be applied in the described

framework.

3.1.1 Stationary iteration for solving symmetric indefinite systems

with SPD preconditioners

Given a symmetric indefinite matrix A and an SPD preconditioner T , we

consider the iteration of the form

r(i) = b− Ax(i), w(i) = Tr(i), s(i) = TAw(i), l(i) = s(i) − βw(i),

x(i+1) = x(i) + αl(i), i = 0, 1, . . . ,
(3.5)

where α (nonzero) and β are real numbers. Scheme (3.5) can be viewed as

preconditioned stationary iteration (3.3) with a search direction w(i) replaced

by a modified direction l(i) which is a linear combination of the preconditioned

residual w(i) and a vector s(i) = TAw(i). We notice that method (3.5) is exactly

stationary iteration (3.3), applied to solve the (preconditioned, T−1-symmetric)

system

(TA− βI)TAx = (TA− βI)Tb, (3.6)

or, equivalently, the symmetric system (AT − βI)Ax = (AT − βI) b with the

preconditioner T . Alternatively, (3.6) can be viewed as an instance of a polyno-

mially preconditioned system, see, e.g., [59].

With β = 0, method (3.5) turns into iteration (3.3) applied to the sys-

tem of the normal equations (TA)2x = TATb, or, equivalently, to the system

ATAx = ATb, with an SPD matrix ATA, preconditioned with T . The optimal

choice of the parameter α in this case leads to the (optimal) convergence rate
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with a factor ρopt = κ((TA)2)−1
κ((TA)2)+1

. We next show that for certain choices of the pa-

rameters α and β method (3.5) converges to the solution of system (3.1). More-

over, the (optimal) convergence rate is improved, depending on the eigenvalue

distribution of the preconditioned matrix TA, compared to the above discussed

approach based on solving the corresponding system of normal equations with

method (3.3).

Let us assume that the spectrum of the preconditioned matrix TA, i.e.,

Λ(TA) = {λ1, . . . , λp, λp+1, . . . , λn}, is located within the union of the two in-

tervals

I = [a, b]
⋃

[c, d] , (3.7)

where a ≤ λ1 ≤ λp ≤ b < 0 < c ≤ λp+1 ≤ λn ≤ d, and λi ≤ λi+1, i = 1, . . . , n−1.

The following theorem holds:

Theorem 3.2 Let us consider method (3.5) applied to solve linear system (3.1)

with a symmetric indefinite coefficient matrix A and an SPD preconditioner T .

Let us assume that the spectrum of the matrix TA is only known to be enclosed

within the pair of intervals I in (3.7).

If b < β < c and 0 < α < τβ, where τβ = 2/ max
λ∈{a,d}

(λ2 − βλ), then

‖r(i+1)‖T
‖r(i)‖T

≤ ρ < 1, where ρ = max
λ∈{a,b,c,d}

∣∣1− α(λ2 − βλ)
∣∣ , (3.8)

i.e., method (3.5) converges to the solution of system (3.1). Moreover, the con-

vergence with the optimal convergence factor

ρ = ρopt =
κ̃− 1

κ̃+ 1
, where κ̃ =


(
d

c

)(
|b|+ d− c
|b|

)
, if |a| − |b| ≤ d− c(a

b

)(c+ |a| − |b|
c

)
, if |a| − |b| > d− c

(3.9)

54



corresponds to the choice of parameters β = βopt = c− |b| and α = αopt, where

αopt =

2/(|b| c+ d(|b|+ d− c)), if |a| − |b| ≤ d− c

2/(|b| c+ |a| (c+ |a| − |b|)), if |a| − |b| > d− c
. (3.10)

Proof: As has been mentioned, method (3.5) is exactly stationary itera-

tion (3.3), applied to solve system (3.6), or, equivalently, the symmetric system

(AT − βI)Ax = (AT − βI) b with the preconditioner T . Thus, in order for

method (3.5) to converge, by Proposition 3.1, the parameter β needs to be cho-

sen such that the matrix Sβ = (TA− βI)TA in (3.6) is positive definite, i.e., all

the eigenvalues µj of Sβ are positive. Since µj = λ2
j − βλj, where λj ∈ Λ(TA),

we conclude, by enforcing the parabola µ(λ) = λ2− βλ > 0 on I (and hence on

Λ(TA) ⊂ I), that µj > 0 if b < β < c for all j = 1, . . . , n.

Next we observe that the preconditioned residual, corresponding to a step

of method (3.5), can be written as

Tr(i+1) = (I − αTA (TA+ βI))Tr(i) = (I − αSβ)Tr(i).

Thus, using the derivations similar to those in Proposition 3.1, one gets the

following inequality for the T -norms of the residual vectors at the consecutive

iterations:

‖r(i+1)‖T ≤ max
λj∈Λ(TA)

∣∣1− α(λ2
j − βλj)

∣∣ ‖r(i)‖T ≤ max
λ∈I

∣∣1− α(λ2 − βλ)
∣∣ ‖r(i)‖T .

(3.11)

Since µ(λ) = λ2 − βλ > 0 for λ ∈ I, provided that b < β < c, it is possible to

choose a sufficiently small α in (3.11) such that |1− α(λ2 − βλ)| < 1 on I; i.e.,

0 < α < 2/max
λ∈I

(
λ2 − βλ

)
= 2/ max

λ∈{a,d}

(
λ2 − βλ

)
.
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Therefore, the choice b < β < c and 0 < α < τβ, where τβ = max
λ∈{a,d}

(
λ2 − βλ

)
,

implies, by (3.11), that ‖r(i+1)‖T/‖r(i+1)‖T ≤ ρ < 1, where

ρ = max
λ∈I

∣∣1− α(λ2 − βλ)
∣∣ = max

λ∈{a,b,c,d}

∣∣1− α(λ2 − βλ)
∣∣ .

This proves convergence bound (3.8).

Finally we determine the choice of the parameters α = αopt and β = βopt

such that method (3.5) converges to the solution of system (3.1) with an optimal

rate, i.e., with the convergence factor

ρ = ρopt = min
α,β

max
λ∈{a,b,c,d}

∣∣1− α(λ2 − βλ)
∣∣ = max

λ∈{a,b,c,d}

∣∣1− αopt(λ2 − βoptλ)
∣∣ .

We note that, for any b < β < c, the corresponding optimal value of α =

αopt(β) is

αopt(β) =
2

min
λ∈{b,c}

(λ2 − βλ) + max
λ∈{a,d}

(λ2 − βλ)
, (3.12)

see, e.g., Axelsson [3, Theorem 5.6] for a detailed explanation. This choice of α

leads to the convergence rate with the factor

ρ = ρopt(β) =
κ̃(β)− 1

κ̃(β) + 1
, where κ̃(β) =

max
λ∈{a,d}

(λ2 − βλ)

min
λ∈{b,c}

(λ2 − βλ)
, for any b < β < c.

(3.13)

Since β is assumed to be arbitrary from the interval (b, c), the above equality al-

lows us to conclude that the optimal convergence rate of method (3.5) applied to

solve system (3.1) occurs if β is chosen to minimize κ̃(β) in (3.13). The latter is,

in fact, equivalent to the observation that method (3.3) with an optimal choice

of the parameter α applied to the family of systems (3.6) with (preconditioned)

coefficient matrices {Sβ = (TA+ βI)TA}, b < β < c, delivers the best conver-
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gence rate for the matrix Sβopt corresponding to β = βopt, which minimizes the

condition number of Sβ.

Now let β = βopt = c − |b|. Then, since b2 − βoptb = c2 − βoptc = |b| c, we

have

κ̃(βopt) =


d2 − βoptd
|b| c

, if |a| − |b| ≤ d− c

a2 − βopta
|b| c

, if |a| − |b| > d− c

=


(
d

c

)(
|b|+ d− c
|b|

)
, if |a| − |b| ≤ d− c(a

b

)(c+ |a| − |b|
c

)
, if |a| − |b| > d− c.

One can check that the above choice β = βopt indeed minimizes κ̃(β) in (3.13),

e.g., by adding an arbitrary perturbation ε to βopt and showing that the function

κ̃(βopt + ε) ≡ κ̃(ε) is increasing for ε > 0 and decreasing for ε < 0. This proves

the optimal convergence rate of method (3.5) given by the factor ρopt in (3.9)

with κ̃ = κ̃(βopt), where βopt = c− |b| and, by (3.12), αopt = αopt(βopt), i.e.,

αopt =
2

|b| c+ max
λ∈{a,d}

(λ2 − βoptλ)
,

which results in expression (3.10).

We note that if |a| − |b| = d− c, i.e., both intervals in (3.7) are of the same

length, then the optimal convergence factor ρ = ρopt in (3.9) is determined by

κ̃ =
ad

bc
. Although the proof of Theorem 3.2 does not rely on this assumption, it

is clear that for the general case, where |a| − |b| 6= d− c, the expression for κ̃ in

(3.9) can be derived after extending the smaller interval to match the length of

the larger one by shifting the corresponding endpoint a or d, and then applying

the result for the intervals of the equal length. We also note that if [a, b] and [c, d]
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are located symmetrically with respect to the origin, i.e., |a| = d and |b| = c,

then βopt = 0 and method (3.5) turns into stationary iteration (3.3) applied to

normal equations with the optimal convergence rate determined by κ̃ =
(a
b

)2

which is essentially a square of the condition number of the matrix TA.

Finally, we remark that the idea of transforming the original symmetric

indefinite system (3.1) into an SPD system (3.6) with a minimized condition

number, which underlies method (3.5) and Theorem 3.2, has previously appeared

in literature, though without a preconditioner, e.g., in [3] in the context of the

Chebyshev iteration.

We will use scheme (3.5) as a base for obtaining simple preconditioned

residual-minimizing methods to solve system (3.1). Theorem 3.2 will allow us

to provide the corresponding convergence estimates.

3.1.2 Simple residual-minimizing methods for solving symmetric

indefinite systems with SPD preconditioners

Let us consider the following iterative scheme for solving a symmetric indef-

inite system (3.1) with an SPD preconditioner T and a fixed parameter β:

l(i) = s(i) − βw(i), s(i) = TAw(i), w(i) = Tr(i), r(i) = b− Ax(i),

x(i+1) = x(i) + α(i)l(i), α(i) = (w(i),Al(i))

(Al(i),TAl(i))
, b < β < c, i = 0, 1, . . . ,

(3.14)

where b and c are the endpoints of the intervals I in (3.7). Unlike stationary

iteration (3.5), method (3.14) allows the parameters α(i) to vary at each step

such that the next approximation x(i+1) corresponds to the residual vector with

the smallest T -norm in the affine space r(i) + span
{
Al(i)

}
, i.e.,

α(i) = argmin
α∈R

‖r(i) − αAl(i)‖T . (3.15)
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The following theorem shows that method (3.14) converges to the exact

solution of system (3.1) for any b < β < c, moreover the choice of β = βopt =

c−|b| guarantees that (3.14) converges not slower than stationary iteration (3.5)

with optimal parameters.

Theorem 3.3 Let us consider method (3.14) applied to solve linear system (3.1)

with a symmetric indefinite coefficient matrix A and an SPD preconditioner T .

We assume that the spectrum of the matrix TA is only known to be enclosed

within the pair of intervals I in (3.7).

If b < β < c, then

‖r(i+1)‖T
‖r(i)‖T

≤ ρ < 1, where ρ =
κ̃− 1

κ̃+ 1
, κ̃ =

max
λ∈{a,d}

(λ2 − βλ)

min
λ∈{b,c}

(λ2 − βλ)
. (3.16)

Moreover, if β = βopt = c− |b|, then κ̃ is defined by (3.9).

Proof: By (3.15) we have

‖r(i+1)‖T = ‖r(i) − α(i)Al(i)‖T ≤ ‖r(i) − αAl(i)‖T ∀α ∈ R.

Let us assume that β is fixed, such that b < β < c. Then, following the proof

of Theorem 3.2, the choice of α = αopt(β) as in (3.12), by (3.11), leads to

expression (3.13) for the convergence factor ρ in (3.16). One can verify that if

β = βopt = c− |b| then κ̃ is defined by (3.9).

Given a constant β, e.g., provided by information about the spectrum loca-

tion or computational experience, scheme (3.14) represents the simplest residual-

minimizing method with the minimization at a step i performed over the one-

dimensional subspace span
{
Al(i)

}
, moreover the resulting convergence behavior
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is in general improved compared to the one of the corresponding methods based

on solving normal equations.

If no information for the choice of β is available, one can allow it to vary at

each step. For example, let us consider the following iterative scheme:

l(i) = s(i) − β(i)w(i), s(i) = TAw(i), w(i) = Tr(i), r(i) = b− Ax(i),

x(i+1) = x(i) + α(i)l(i), i = 0, 1, . . . ,
(3.17)

where the parameters α(i) and β(i) are chosen to guarantee the minimal-

ity of the T -norm of the next residual vector r(i+1) over the affine space

r(i) + span
{
Aw(i), As(i)

}
, i.e., α(i) and β(i) in (3.17) are such that

‖r(i+1)‖T = min
u∈span{Aw(i),As(i)}

‖r(i) − u‖T . (3.18)

Optimality condition (3.18) is equivalent to the following orthogonality condi-

tions

(r(i+1), As(i))T = (r(i+1), Aw(i))T = 0,

which provide the expressions for the iteration parameters:

β(i) =
(s(i), As(i))(w(i), As(i))− (TAs(i), As(i))(w(i), Aw(i))

(w(i), As(i))2 − (w(i), Aw(i))(s(i), As(i))
,

α(i) =
(w(i), Al(i))

(Al(i), TAl(i))
=

(w(i), As(i))2 − (w(i), Aw(i))(s(i), As(i))

(TAs(i), As(i))(s(i), Aw(i))− (s(i), As(i))2
.

(3.19)

We note that along with expressions (3.19) for the choice of the parameters,

method (3.17)–(3.18) can admit other implementations, e.g., based on the prop-

erly restarted Lanczos procedure. The following theorem provides a bound on

the convergence rate of scheme (3.17)–(3.18).
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Theorem 3.4 We consider method (3.17)–(3.18) applied to solve the linear sys-

tem (3.1) with a symmetric indefinite coefficient matrix A and an SPD precon-

ditioner T . We assume that the spectrum of the matrix TA is only known to be

enclosed within the pair of intervals I in (3.7). Then at each step of the method

the T -norm of the residual vector is reduced at least by the factor ρ in (3.9), i.e.,

‖r(i+1)‖T
‖r(i)‖T

≤ κ̃− 1

κ̃+ 1
. (3.20)

Proof: Since α(i) and β(i) are such that ‖r(i+1)‖ has the smallest T -norm over

r(i) + span
{
Aw(i), As(i)

}
, we get

‖r(i+1)‖T = ‖r(i) − α(i)Al(i)‖T = ‖r(i) − α(i)As(i) + α(i)β(i)Aw(i)‖T

≤ ‖r(i) − αA
(
s(i) − βw(i)

)
‖T , ∀α, β ∈ R.

The choice of β = βopt = c− |b| and α = αopt in (3.10), by Theorem 3.2, results

in convergence factor (3.9) for the reduction of the T -norm of the residual vector

at each step of method (3.17)–(3.18).

We remark that method (3.17)–(3.18), for solving symmetric indefinite linear

systems with SPD preconditioners, described by convergence estimate (3.9),

(3.20), can be viewed as an analogue of the preconditioned steepest descent

iteration for solving SPD systems. In the next section we discuss methods,

including the optimal minimal residual iterations, which allow us to improve

convergence factor (3.9).

3.1.3 The second-order and minimal residual methods for solving

indefinite systems with SPD preconditioners

The ideas underlying methods (3.5), (3.14)–(3.15) and (3.17)–(3.18) can be

further extended to improve convergence factor (3.9). In particular, applying
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the so-called second-order stationary iteration, i.e., the iteration of form (3.3)

with the additional term in the direction of the difference p(i) = x(i) − x(i−1)

of approximations from the current and previous steps, to transformed system

(3.6), results in the following scheme for solving system (3.1) with an SPD

preconditioner T :

l(i) = s(i) − β(i)w(i), s(i) = TAw(i), w(i) = Tr(i), r(i) = b− Ax(i),

x(i+1) = x(i) + α(i)l(i) + (γ(i) − 1)p(i), p(i) = x(i) − x(i−1) , p(0) = x(0),

i = 0, 1, . . . ,

(3.21)

where parameters α(i) = α, β(i) = β, γ(i) = γ ∈ R are constant throughout

iterations. If, similarly to Theorem 3.2 for method (3.5), the parameter β is

set to βopt = c − |b|, then it is possible to show that there exist optimal values

for α and γ such that scheme (3.21), with the stationary iteration parameters,

converges to the solution of (3.1) with the asymptotically average convergence

factor

ρavg =

√
κ̃− 1√
κ̃+ 1

, (3.22)

where κ̃ is defined in (3.9). In particular, the latter can be shown, e.g., by

using the convergence bound in Axelsson [3, Theorem 5.9] for the second-order

stationary iteration applied to transformed system (3.6) with β = βopt. Thus, the

convergence of method (3.21) with the optimal choice of stationary parameters

is given by

‖r(i)‖T
‖r(0)‖T

≤ Cρiavg, (3.23)

where C is a positive constant, and ρavg is defined in (3.22).

In the same way as stationary scheme (3.5) has been extended to method

(3.17)–(3.18), the second-order method (3.21), with α(i) = α, β(i) = β and
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γ(i) = γ, can be generalized to have variable iteration parameters, chosen at

each step to minimize the T -norm of the next residual vector r(i+1) in the affine

space r(i) + span
{
Aw(i), As(i), Ap(i)

}
, i.e.,

‖r(i+1)‖T = min
u∈span{Aw(i),As(i),Ap(i)}

‖r(i) − u‖T . (3.24)

It is immediately seen that one step of method (3.21), (3.24) results in the

reduction of the residual T -norm, which is not worse than that provided by

method (3.17)–(3.18), hence, convergence bound (3.9), (3.20) is valid for itera-

tion (3.21), (3.24). We remark that the latter bound is likely to be pessimistic

for method (3.21), (3.24), and, in practice, according to estimate (3.23) for iter-

ation (3.21) with optimal stationary parameters, it is reasonable to expect the

reduction of the residual norm by a factor of order (3.22).

Methods (3.17)–(3.18) and (3.21), (3.24) are examples of convergent locally

optimal preconditioned methods for solving a symmetric indefinite system (3.1)

with an SPD preconditioner, based on the idea of the residual norm minimiza-

tion. The local optimality follows from the corresponding conditions (3.18) and

(3.24), which, at each step, seek to minimize the residual T -norm over certain

low-dimensional, local, subspaces of a fixed size.

As opposed to locally optimal methods, the preconditioned globally optimal

residual-minimizing methods for solving system (3.1), at each step i, extract a

minimizer for the appropriate residual norm from an (expanding) i-dimensional

subspace. We now define the (globally optimal) Krylov subspace preconditioned

minimal residual methods for solving system (3.1) with a preconditioner T .

Definition 3.5 We say that a method to solve system (3.1) is a preconditioned

minimal residual method, if, at step i, it constructs an approximation x(i) to the

63



solution of system (3.1) of the form

x(i) ∈ x(0) +Ki
(
TA, Tr(0)

)
, (3.25)

and the corresponding residual vector r(i) = b− Ax(i) is such that

‖r(i)‖S = min
u∈AKi(TA,Tr(0))

‖r(0) − u‖S, (3.26)

where Ki
(
TA, Tr(0)

)
= span

{
Tr(0), (TA)Tr(0), . . . , (TA)i−1Tr(0)

}
is the (pre-

conditioned) Krylov subspace generated by the matrix TA and the vector Tr(0),

AKi
(
TA, Tr(0)

)
= span

{
(AT )r(0), . . . , (AT )ir(0)

}
is the corresponding Krylov

residual subspace; ‖x‖2
S = (x, Sx) for some SPD operator S.

In particular, for general (square) matrices T and A, the preconditioned

minimal residual method with S = T ∗T in (3.26) is delivered, e.g., by the pre-

conditioned GMRES [61, 33, 59]. The case where A is symmetric indefinite and

T is SPD with S = T is commonly fulfilled with the preconditioned MINRES

algorithm (PMINRES) [55, 33, 59], which is known to admit a short-term recur-

rent form while maintaining global optimality (3.26) in exact arithmetic. Scheme

(3.17)–(3.18) corresponds to the preconditioned minimal residual method with

S = T restarted after every two steps. Iteration (3.21) with variable parameters

chosen according to (3.24) can be viewed as the same preconditioned mini-

mal residual method restarted after every two steps with the additional vector

p(i) = x(i) − x(i−1).

Finally, let us note that convergence factor (3.22) is commonly used to

estimate the convergence rate of the preconditioned minimal residual method

(3.25)–(3.26) with S = T (e.g., in PMINRES implementation), once the residual
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norms are measured at every other step, i.e.,

‖r(i)‖T
‖r(0)‖T

≤ 2ρjavg, i = 2j, j = 1, 2, 3, . . . , (3.27)

see, e.g., [33, 59].

In the next section, we define the optimal SPD preconditioner T for mini-

mal residual methods (3.25)–(3.26), as well as for the locally optimal methods

described in the current section, applied to solve system (3.1) with a symmetric

indefinite coefficient matrix A.

3.2 Absolute value preconditioners for symmetric indefinite systems

In this section, we propose a novel concept of absolute value preconditioning,

where the preconditioner approximates the absolute value of the coefficient ma-

trix. We show, for a model problem, that such a preconditioner can be efficiently

constructed in the multigrid framework.

3.2.1 Optimal SPD preconditioners for symmetric indefinite systems

Let A ∈ Rn×n be a symmetric matrix with an eigendecomposition A =

V ΛV ∗, where V is an orthogonal matrix of eigenvectors and Λ = diag{λj}, j =

1, . . . , n, is a diagonal matrix of eigenvalues of A. We consider the factorization

of the form

A = |A| sign(A) = sign(A) |A| , (3.28)

where |A| = V |Λ|V ∗ is an (SPD) absolute value of the matrix A (matrix absolute

value), |Λ| = diag{|λj|}, and sign(A) = V sign(Λ)V ∗ is a sign of A (matrix sign),

sign(Λ) = diag{sign(λj)}. Factorization (3.28) is, in fact, a polar decomposition,

see, e.g., [42], of the symmetric matrix A, with the positive (semi) definite factor

|A| and the orthogonal factor sign(A).
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The following theorem states that the inverse of the absolute value of the

coefficient matrix is an optimal SPD preconditioner for the methods described in

the previous section, including minimal residual methods (3.25)–(3.26), applied

to solve a (general) symmetric indefinite linear system, i.e., T = Topt = |A|−1.

Theorem 3.6 Any minimal residual method (3.25)–(3.26), applied to solve lin-

ear system (3.1) with a symmetric indefinite coefficient matrix A and the precon-

ditioner T = |A|−1, converges to the exact solution in at most two steps. Further,

under the same assumptions on A and T , methods (3.14)–(3.15), (3.17)–(3.18),

and (3.21) satisfying (3.24), as well as schemes (3.5) and (3.21) with corre-

sponding optimal stationary iteration parameters, deliver the exact solution in

exactly one step.

Proof: Minimization property (3.26) at a step i of a preconditioned minimal

residual method can be equivalently written as

‖r(i)‖S = min
p∈Pi, p(0)=1

‖p(AT )r(0)‖S, (3.29)

where Pi is a set of all polynomials of degree at most i. Then, according to the

decomposition (3.28), the choice T = |A|−1 results in the matrix AT = sign(A)

with only two distinct eigenvalues: −1 and 1. Hence the minimal polynomial

of AT is of the second degree. Thus, by (3.29), ‖r(i)‖S = 0 for at most i = 2

and any SPD operator S. Thus any preconditioned minimal residual method

(3.25)–(3.26) converges to the exact solution of the symmetric indefinite system

(3.1) with T = |A|−1 in at most two steps.

The one-step convergence of the remaining methods follows from the obser-

vation that factors (3.9) and (3.22) are zero, since κ̃ = 1 if T = |A|−1.
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If A is SPD, the claim of the theorem reduces to the trivial fact that the

optimal preconditioner for system (3.1) is the exact inverse of A. We also note

that actual implementations of minimal residual methods (3.25)–(3.26), at their

two consecutive iterations, perform essentially the same, in terms of matrix-

vector multiplications, number of computations as one step of methods (3.14)–

(3.15), (3.17)–(3.18), (3.21) with condition (3.24), as well as stationary iterations

(3.5) and (3.21) with the optimal choice of iteration parameters. In this sense,

the two-step optimality result for a minimal residual method, given by Theorem

3.6, is compatible with the optimal one-step convergence of the above mentioned

methods, described in this section. The latter also explains the compatibility of

convergence estimates (3.23) and (3.27).

Remark 3.7 Methods of form (3.17) and (3.21) with T = |A|−1 and the corre-

sponding optimality conditions (3.18) and (3.24) replaced by the residual mini-

mization in an arbitrary S-norm, i.e.,

‖r(i+1)‖S = min
u∈span{Aw(i),As(i)}

‖r(i) − u‖S, (3.30)

and,

‖r(i+1)‖S = min
u∈span{Aw(i),As(i),Ap(i)}

‖r(i) − u‖S, (3.31)

respectively, also converge to the exact solution of symmetric indefinite system

(3.1) in exactly one step for any SPD operator S.

In practical situations the construction of the optimal preconditioner Topt =

|A|−1 becomes prohibitive. We show, however, that the choice of the precondi-

tioner T as some approximation of Topt, i.e., T ≈ |A|−1, may lead to a significant
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improvement in the convergence rate of an iterative method. For example, the

preconditioners T ≈ |A|−1 can be constructed by exactly inverting the abso-

lute value of a symmetric approximation of the coefficient matrix A, assuming

that the latter can be efficiently performed. In particular, if A is diagonally

dominant, then T can be chosen to be diagonal,

T = diag
{
|ajj|−1

}
,

where ajj are the diagonal entries of A. Let us agree to call an SPD precon-

ditioner T , such that T ≈ |A|−1, an absolute value preconditioner for a linear

system (3.1).

Due to a large problem size, we further assume that an absolute value pre-

conditioner T can be accessed only indirectly, e.g., through a matrix-vector

multiplication. In this case, given a vector r ∈ Rn, there are several ways to

approach the construction of T by defining a vector w = Tr. As the first option,

at each step i of any method described in the previous section, one can attempt

to apply the absolute value preconditioner by approximately solving for z the

following equation

|A| z = r, (3.32)

where, e.g., r = r(i) or/and r = ATr(i), depending on the selected method.

The coefficient matrix |A| is generally not available. The problem of approx-

imately solving linear system (3.32) can be formally replaced by the problem

of finding a vector w which approximates the action of the matrix function

f(A) = |A|−1 on the vector r, i.e., w ≈ f(A)r = |A|−1 r, moreover the construc-

tion of w does not require any knowledge of |A| or |A|−1. The latter constitutes
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a well established task in matrix function computations which is standardly ful-

filled by a Krylov subspace method, e.g., [39, 32]. Our numerical experience

shows that though the convergence rate of a linear solver can be significantly

improved with this approach, the computational costs of the existing methods

for approximating f(A)r = |A|−1 r, e.g., the Lanczos method described in [12],

however, remain too high for their direct use in the context of absolute value

preconditioners for solving symmetric indefinite linear systems.

Another option to apply an absolute value preconditioner is to use a method,

based on a certain preconditioning technique, which is possibly divergent as a

stand-alone approximate solver for equation (3.32), e.g., since only limited infor-

mation about the coefficient matrix |A| is available, however, which (implicitly)

results in the construction of an approximation to |A|−1 of a reasonably good

quality. Below we demonstrate on the example of a model problem that such

construction of an efficient absolute value preconditioner is indeed possible, e.g.,

if based on MG techniques.

3.2.2 An absolute value preconditioner for a model problem

Let us consider the following boundary value problem,

−∆u(x, y)− c2u(x, y) = f(x, y), (x, y) ∈ Ω = (0, 1)× (0, 1),

u|Γ = 0,
(3.33)

where −∆ = − ∂2

∂x2
− ∂2

∂y2
is the negative Laplace operator (or, Laplacian),

c ∈ R, f(x, y) ∈ C(Ω), and Γ denotes the boundary of the domain Ω. Problem

(3.33) is, in fact, a particular instance of the Helmholtz equation with Dirichlet

boundary conditions, c2 is a wavenumber; see, e.g., [69].
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After introducing a uniform grid of the step size h (mesh size) and using the

standard 5-point finite-difference (FD) stencil to discretize continuous problem

(3.33), see, e.g., [30], one obtains the corresponding discrete problem, i.e., system

of linear equations (3.1) of the form

(L− c2I)x = b, (3.34)

where the coefficient matrix A = L− c2I (the discrete Helmholtz operator) rep-

resents a discrete negative Laplace operator L, satisfying the Dirichlet boundary

condition at the grid points on the boundary, shifted by a scalar c2 times the

identity matrix I. The right-hand side b in (3.34) corresponds to the vector of

function values of f(x, y) calculated at the grid points (numbered in the lexi-

cographical order). In our numerical tests, b is generated randomly. The exact

solution x = x∗ of system (3.34) then provides an approximation to the solution

of the boundary value problem (3.33) evaluated at the grid points.

Further, assuming that c2 is different from any eigenvalue of the SPD neg-

ative Laplacian L and is greater than its smallest, however less than its largest,

eigenvalue, i.e., λmin(L) < c2 < λmax(L), where λmin(L) = 2π2 + O(h2) and

λmax(L) = 8h−2 + O(1), we conclude that the operator A = L − c2I is non-

singular symmetric indefinite. Thus, in order to solve system (3.34), accord-

ing to Theorem 3.6, one can choose any of the methods from the previous

section with an (absolute value) preconditioner T approximating the operator

|A|−1 = |L− c2I|−1
. Below we use the MG techniques to provide an examples

of such preconditioner. We refer to (3.34) as the model problem.
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3.2.2.1 Multigrid absolute value preconditioner

In this section we use the ideas underlying the (geometric) MG methods,

e.g., [73, 14], to construct a preconditioner for the model symmetric indefinite

system (3.34). Combining the MG principles with the idea of the absolute

value preconditioners (Theorem 3.6), we construct an efficient preconditioner

for the model problem with low wavenumbers c2, i.e., if the operator A = L −

c2I in (3.34) is slightly indefinite. We compare the proposed approach with a

preconditioning strategy based on the inverse of the Laplacian, which we set as

a benchmark to assess the quality of the constructed preconditioner.

Along with the (fine) grid of the mesh size h underlying the discretized

Helmholtz equation (3.34) let us consider a (coarse) grid of a mesh size H > h.

We denote the discretization of the negative Laplacian on this grid by LH , IH

represents the identity operator of the corresponding dimension. Further, we

assume that the fine-level absolute value |L− c2I| is not computable, while its

coarse-level analogue |LH − c2IH | can be efficiently constructed and/or inverted,

e.g., by the full eigendecomposition. Let us note that in the two-grid framework

we use the subscript H to refer to the quantities defined on the coarse grid. No

subscript is used for denoting the fine-grid quantities.

We suggest the following scheme as an example of the two-grid absolute

value preconditioner for model problem (3.34).
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Algorithm 3.8 (Two-grid absolute value preconditioner)

Input r, output w.

1. Pre-smoothing. Apply ν pre-smoothing steps with the zero initial guess

(w(0) = 0):

w(i+1) = w(i) +M−1(r − Lw(i)), i = 0, . . . , ν − 1, (3.35)

where the (nonsingular) matrix M defines the choice of a smoother. This

step results in the pre-smoothed vector wpre = w(ν), ν ≥ 1.

2. Coarse grid correction. Restrict the vector r − Lwpre to the coarse grid,

multiply it by the inverted coarse-level absolute value |LH − c2IH |, and then

prolongate the result back to the fine grid. This delivers the coarse-grid

correction, which is added to wpre to obtain the corrected vector wcgc:

wH =
∣∣LH − c2IH

∣∣−1
R (r − Lwpre) , (3.36)

wcgc =wpre + PwH , (3.37)

where P and R are prolongation and restriction operators, respectively.

3. Post-smoothing. Apply ν post-smoothing steps with the initial guess w(0) =

wcgc:

w(i+1) = w(i) +M−∗(r − Lw(i)), i = 0, . . . , ν − 1. (3.38)

This step results in the post-smoothed vector wpost = w(ν). Return w =

wpost.

In (3.36) we have assumed that the coarse-grid operator |LH − c2IH | is invertible,

i.e., c2 is different from any eigenvalue of LH . The number of smoothing steps
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in (3.35) and (3.38) is the same; the pre-smoother is defined by the nonsingular

matrix M , while the post-smoother is delivered by M∗.

We note that once the absolute value of the discrete Helmholtz operator

L−c2I on the fine level is not available, one can attempt to replace it by an easily

accessible SPD approximation, e.g., the negative Laplacian L = |L| ≈ |L− c2I|,

as was done in Algorithm 3.8. Although this substitution may result in the

divergence of the algorithm as a two-grid method for solving equation (3.32),

we show that its use as a preconditioner (along with its multigrid extension)

allows us to noticeably accelerate the convergence of the methods described in

the previous section applied to solve the symmetric indefinite model problem

(3.34) for shifts c2 of a relatively small size.

One can check that the two-grid Algorithm 3.8 implicitly constructs a map-

ping r 7→ w = Ttgr, where the operator T = Ttg has the following structure:

Ttg =
(
I −M−∗L

)ν
P
∣∣LH − c2IH

∣∣−1
R
(
I − LM−1

)ν
+ S, (3.39)

with S = L−1 − (I −M−∗L)
ν
L−1 (I − LM−1)

ν
. In particular, in the context

of methods from the previous section, at each iteration i, the vector r is set

to r(i) or/and ATr(i), where r(i) = b − (L − c2I)x(i) is the residual vector of

problem (3.34) at the i-th step of the corresponding method. The fact that the

constructed preconditioner T = Ttg is SPD, follows directly from the observation

that the first term in (3.39) is symmetric positive semi-definite provided that

P = αR∗ for some nonzero scalar α, while the second term S is symmetric and

positive definite if the spectral radii ρ(I −M−1L) < 1 and ρ(I −M−∗L) < 1.

The latter condition, in fact, requires the pre- and post-smoothing iterations

(steps 1 and 3 of Algorithm 3.8) to represent convergent methods for system
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(3.34) with c = 0 and b = r (i.e., for the discrete Poisson’s equation) on their

own. We note that the above argument for the operator T = Ttg to be SPD

essentially repeats the corresponding pattern to justify symmetry and positive

definiteness of a two-grid preconditioner applied within an iterative scheme, e.g.,

preconditioned conjugate gradient method (PCG), to solve a system of linear

equations with an SPD coefficient matrix; see, e.g., [13, 67].

Now let us consider a hierarchy of m + 1 grids numbered by l = m,m −

1, . . . , 0 with the corresponding mesh sizes {hl} in the decreasing order (hm = h

corresponds to the finest, and h0 to the coarsest, grid). For each level l we define

the discretization Ll − c2Il of the differential operator in (3.33), where Ll is the

discrete negative Laplacian on grid l, and Il is the identity of the same size.

In order to extend the two-grid absolute value preconditioner given by Algo-

rithm 3.8 to the multigrid, instead of inverting the absolute value |LH − c2IH | in

step 2 (formula (3.36)), we recursively apply the algorithm to the restricted

vector R(r − Lwpre). This pattern is then followed, in the V-cycle “fash-

ion”, on all levels, with the exact inversion of the absolute value of the dis-

crete Helmholtz operator on the coarsest grid. The described approach can

be viewed as replacing wH in (3.36) by its approximation, i.e., constructing

wH ≈ |LH − c2IH |−1
R (r − Lwpre).

If started from the finest grid l = m, the following scheme gives the multilevel

extension of the two-grid absolute value preconditioner defined by Algorithm 3.8.

We note that the subscript l is introduced to match the occurring quantities to

the corresponding grid.
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Algorithm 3.9 (AVP-MG(rl): MG absolute value preconditioner)

Input rl, output wl.

1. Pre-smoothing. Apply ν pre-smoothing steps with the zero initial guess

(w
(0)
l = 0):

w
(i+1)
l = w

(i)
l +M−1

l (rl − Llw(i)
l ), i = 0, . . . , ν − 1, (3.40)

where the (nonsingular) matrix Ml defines the choice of a smoother on

level l. This step results in the pre-smoothed vector wprel = w
(ν)
l , ν ≥ 1.

2. Coarse grid correction. Restrict the vector rl − Llwprel to the grid l − 1.

If l = 1, then multiply the restricted vector by the inverted coarse-level

absolute value |L0 − c2I0|,

w0 =
∣∣L0 − c2I0

∣∣−1
R0 (r1 − L1w

pre
1 ) , if l = 1. (3.41)

Otherwise, recursively apply AVP-MG to approximate the action of the

inverted absolute value |Ll−1 − c2Il−1| on the restricted vector,

wl−1 = AVP-MG (Rl−1 (rl − Llwprel )) , if l > 1. (3.42)

Prolongate the result back to the fine grid. This delivers the coarse-grid

correction, which is added to wprel to obtain the corrected vector wcgcl :

wcgcl = wprel + Plwl−1, (3.43)

where wl−1 is given by (3.41)–(3.42). The operators Rl−1 and Pl define

the restriction from the level l to l− 1 and the prolongation from the level

l − 1 to l, respectively.
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3. Post-smoothing. Apply ν post-smoothing steps with the initial guess w
(0)
l =

wcgcl :

w
(i+1)
l = w

(i)
l +M−∗

l (rl − Llw(i)
l ), i = 0, . . . , ν − 1. (3.44)

This step results in the post-smoothed vector wpostl = w
(ν)
l . Return wl =

wpostl .

The described multigrid absolute value preconditioner implicitly constructs

a mapping r 7→ w = Tmgr, where the operator T = Tmg has the following

structure:

Tmg =
(
I −M−∗L

)ν
PT (m−1)

mg R
(
I − LM−1

)ν
+ S, (3.45)

with S as in (3.39) and T
(m−1)
mg defined according to the recursion below,

T (l)
mg =

(
Il −M−∗

l Ll
)ν
PlT

(l−1)
mg Rl−1

(
Il − LlM−1

l

)ν
+ Sl, l = 1, . . . ,m− 1,

T (0)
mg =

∣∣L0 − c2I0

∣∣−1
, (3.46)

where Sl = L−1
l −

(
Il −M−∗

l Ll
)ν
L−1
l

(
Il − LlM−1

l

)ν
.

Let us note that in (3.45) we skip the subscript in the notation for the

quantities associated with the finest level l = m. The structure of the multilevel

preconditioner T = Tmg in (3.45) is similar to that of the two-grid precondi-

tioner T = Ttg in (3.39), with |LH − c2IH |−1
replaced by the recursively defined

operator T
(m−1)
mg in (3.46). If the assumptions on the fine-grid operators M , M∗,

R and P , sufficient to ensure that the two-grid preconditioner in (3.39) is SPD,

remain valid throughout the coarser levels, i.e., Pl = αR∗l−1, ρ(Il −M−1
l Ll) < 1

and ρ(Il −M−∗
l Ll) < 1, l = 1, . . . ,m − 1, then the symmetry and positive def-

initeness of the multigrid preconditioner T = Tmg in (3.45) is easily extended

from the same property of a two-grid operator through relations (3.46).
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3.2.2.2 Numerical examples

As mentioned before, two-grid Algorithm 3.8, as well as its multilevel ex-

tension given by Algorithm 3.9, can be viewed as an attempt to solve equation

(3.32) using an MG method, where the absolute value of the discrete Helmholtz

operator on finer levels is replaced by its approximation, i.e., the discrete neg-

ative Laplacian. Alternatively, the described approach can be interpreted as

essentially applying the V-cycle of an MG method to solve the discrete Pois-

son’s problem (i.e., approximating an inverse of the Laplacian), however, with

the modified coarse grid solve.

In fact, the use of the inverse of the (shifted) Laplacian as a preconditioner

for the Helmholtz equation (with possibly complex c2), initially introduced in

Turkel et al. [7], is well known and remains an object of active research, e.g.,

[50, 27, 75]. In our numerical tests below we consider the inverted Laplacian

preconditioner as a benchmark to assess the quality of the MG absolute value

preconditioner delivered by Algorithm 3.9.

Figure 3.1 illustrates several runs of PMINRES with MG absolute value pre-

conditioners applied to solve model problem (3.34), which are compared to the

corresponding runs of MINRES preconditioned with an exactly inverted (using

matlab “backslash” operator) negative Laplacian. The shifts (wavenumbers)

c2 are chosen to maintain a relatively small number of negative eigenvalues of

the Helmholtz operator discretized on the grid of the mesh size h = 2−7, i.e.,

c2 = 100, 200, 300 and 400. The right-hand side vectors b as well as initial

guesses x0 are randomly chosen (same for each shift value); the tolerance for the

2-norm of the residuals (relatively to the 2-norm of right-hand side b) is 10−7.
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Figure 3.1: Comparison of the MG absolute value and the inverted Laplacian
preconditioners for PMINRES applied to the model problem of the size n =
(27 − 1)2 ≈ 1.6× 104.

The MG components for the absolute value preconditioners are defined in the

following way: ω-damped Jacobi iteration as a (pre- and post-) smoother with

the damping parameter ω = 4/5, standard coarsening scheme (i.e., hl−1 = 2hl)

with the coarsest grid of the mesh size 2−4 (coarse problem size n0 = 225),

full weighting for the restriction, and piecewise multilinear interpolation for the

prolongation, see, e.g., Trottenberg et al. [73] for more details. The number

of the smoothing steps ν is chosen to be 1 and 2 (these runs are titled “AVP-

MG-JAC(1)” and “AVP-MG-JAC(2)”, respectively, on Figure 3.1; “Laplace”
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corresponds to the case where the inverted Laplacian is used as a preconditioner).

We note that the increase in the number of smoothing steps improves the quality

of the MG preconditioner and results in the faster (in terms of iterations number)

convergence of PMINRES. PMINRES with the absolute value preconditioners

is also observed to be more robust with respect to the increase of the shift value

compared to the case with the inverted Laplacian.

h = 2−7 h = 2−8 h = 2−9 h = 2−10

c2 = 100 15 14 14 14

c2 = 200 21 21 21 21

c2 = 300 31 32 32 30

c2 = 400 40 39 40 40

Table 3.1: Mesh-independent convergence of PMINRES with the MG absolute
value preconditioner

Table 3.1 shows the mesh-independence of the convergence of PMINRES

with the MG absolute value preconditioner (one pre- and post-smoothing step)

given by Algorithm 3.9. The rows of the table correspond to the shift values

c2 and the columns to the mesh size h. The cell in the intersection contains

the number of steps performed to achieve the decrease by the factor 10−8 in the

error norm. The mesh size of the coarse grid was kept the same throughout all

runs, i.e., h0 = 2−4 (n0 = 225).

It can be observed from Table 3.1 that the quality of the MG absolute value

preconditioner deteriorates with the increase of the shift value. Figure 3.2, which
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Figure 3.2: Performance of the MG absolute value preconditioners for the
model problem with different shift values. The problem size n = (27 − 1)2 ≈
1.6× 104. The number of negative eigenvalues varies from 0 to 75.

shows the number of PMINRES iterations performed to decrease the norm of the

initial error by 10−8 for a given value of c2, reflects the speed of this deterioration.

The number of pre- and post-smoothing steps is set to one. We note that for

higher wavenumbers it may be desirable to have a finer grid on the coarsest level

in Algorithm 3.9.

Figure 3.3 compares locally optimal preconditioned methods (3.17)–(3.18),

denoted by “AVP-MG-LO1”, and (3.21), (3.24), denoted by “AVP-MG-LO2”,

with (globally optimal) preconditioned (“AVP-MG-MINRES”) and unprecon-

ditioned MINRES. The MG absolute value preconditioner, defined according

to Algorithm 3.9, is set up as in the previous tests, with one pre- and post-

smoothing step. We count the multiplication of a vector by the preconditioned

matrix TA as one matrix-vector product. In the unpreconditioned case T = I.

We also assume that methods (3.17)–(3.18) and (3.21), (3.24) are implemented
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to perform twice as many matrix-vector multiplications per step as the PMIN-

RES algorithm.
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Figure 3.3: Comparison of PMINRES with locally optimal methods (3.17),
(3.19) and (3.21), (3.24), all with the MG absolute value preconditioners, applied
to the model problem of the size n = (27 − 1)2 ≈ 1.6× 104.

As expected, the preconditioned globally optimal method exhibits better

convergence rate than methods (3.17), (3.19) and (3.21), (3.24). Method (3.21),

(3.24) is noticeably faster than (3.17), (3.19), which demonstrates that the in-

troduction of the vector p(i) in (3.21) indeed improves the convergence. At a

number of initial steps iteration (3.21), (3.24) is comparable with PMINRES,

however, the latter significantly accelerates at a certain step (possibly with the

occurrence of the superlinear convergence), while the former continues to con-

verge essentially at the same rate.

3.3 Conclusions

In this chapter we have introduced a new preconditioning strategy for sym-

metric indefinite linear systems, which is based on the idea of approximating the

inverse of the absolute value of the coefficient matrix. We call SPD precondi-

tioners constructed according to this principle the absolute value preconditioners.
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We have been able to show that, for the model problem of a linear system with

a two-dimensional shifted discrete negative Laplace operator as a coefficient

matrix, the construction of an absolute value preconditioner can be efficiently

performed using the (geometric) MG techniques. The symmetry and positive

definiteness of the suggested preconditioners allow to use them within the op-

timal short-term recurrent Krylov subspace methods for symmetric indefinite

linear systems, e.g., PMINRES. In the next chapter, we show that the absolute

value preconditioners can also be used for computing the smallest magnitude

eigenvalues and the corresponding eigenvectors of symmetric operators.

The future direction of the related research, as we envision it at the moment,

includes the extension of known preconditioning techniques, e.g., the domain

decomposition, algebraic multigrid, etc., for constructing absolute value precon-

ditioners. Of our particular interest is the construction of algebraic absolute

value preconditioners, as opposed, e.g., to the geometric MG used to justify the

concept in the current chapter. The multilevel methods seem to us quite promis-

ing for constructing the efficient preconditioners, since they allow to perform all

the intense computations, e.g., the inversion of a matrix absolute value using

the full eigendecomposition, on a coarse space of a relatively low dimension. It

is also of our interest to relate the multilevel framework to relevant factoriza-

tions that can be used for preconditioning symmetric indefinite systems, e.g.,

Bunch-Parlett factorization, see [29, 15], performed on a coarse space.

The significant part of this chapter has been devoted to the locally optimal

preconditioned methods for solving symmetric indefinite linear systems. Unlike

the preconditioned minimal residual method, e.g., the PMINRES algorithm,
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these methods lack the global optimality and, hence, demonstrate slower con-

vergence. As will be seen in the next two chapters, the study of the locally

optimal schemes is of crucial importance for extending the ideas underlying the

linear solvers to the eigenvalue and singular value computations. We also note

that the understanding of the behavior of the locally optimal methods is im-

portant for the “completeness” of theory of the residual-minimizing methods

for symmetric indefinite linear systems. In certain frameworks, e.g., if the pre-

conditioner is variable, these schemes can become the methods of choice. The

study of the convergence behavior of the locally optimal iterations with variable

preconditioning represents one of the directions of the future research.
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4. Preconditioned computations of interior eigenpairs of symmetric

operators

In this chapter, we consider the generalized symmetric eigenvalue problem

(eigenproblem)

Av = λBv, A = A∗ ∈ Rn×n, B = B∗ > 0 ∈ Rn×n, (4.1)

where the targeted eigenpair corresponds to the smallest, in the absolute value,

eigenvalue of the matrix pencil A−λB. It is well known, e.g., [56], that problem

(4.1) has all real eigenvalues λi, while the corresponding eigenvectors vi, such

that Avi−λiBvi = 0, can be chosen B-orthogonal, i.e., (vi, vj)B = (vi, Bvj) = 0,

i 6= j. If B = I, then the generalized problem (4.1) reduces to the standard

symmetric eigenproblem.

Problems of form (4.1) appear in a variety of applications, e.g., analysis of a

system’s vibration modes, buckling, electronic structure calculations of materi-

als, graph partitioning, etc. The resulting operators A and B are often extremely

large, possibly sparse and ill-conditioned. It is usually required to find a small

fraction of eigenpairs, which, typically, correspond to neighboring eigenvalues of

the pencil A− λB.

An important class of symmetric eigenproblems (4.1) seeks to find several

extreme, i.e., algebraically largest or smallest, eigenvalues and the correspond-

ing eigenvectors (extreme eigenpairs). If the problem size is large, there is a

number of well-established methods which can be employed to approximate the
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extreme eigenpairs: the Lanczos method and its variations [56], the Jacobi-

Davidson method (JD) [64], the family of preconditioned conjugate gradient

(PCG) iterations, surveyed, e.g., in [54], etc. Though different in their formu-

lations, many of the methods, in fact, follow the same framework, i.e., they

perform the Rayleigh-Ritz procedure, see, e.g., [56], on certain low-dimensional

subspaces, further called the trial subspaces. The choice of the trial subspaces

essentially constitutes the main difference between such methods, also called

projection methods. For example, the Lanczos method performs the Rayleigh-

Ritz procedure on the Krylov subspaces, the JD relies on the subspaces obtained

by solving correction equations, locally optimal (block) PCG methods [48] use

spans of the current eigenvector approximations, the preconditioned residuals

and the “conjugate” directions. For the comprehensive review of the relevant

algorithms we refer the reader to [4].

Another important class of eigenproblems (4.1) aims at finding several eigen-

pairs corresponding to the eigenvalues in the interior of the spectrum of the

pencil A − λB (interior eigenpairs). In particular, the important case is to

find a number of eigenpairs corresponding to the eigenvalues with the smallest

absolute values of a symmetric indefinite matrix. Large problems of this type

frequently appear in applications, e.g., in the electronic structure calculations,

see [68, 60], where a number of eigenpairs of a Hamiltonian matrix around a

given energy level need to be found. The standard approaches for finding the

interior eigenpairs are typically based on the shift-and-invert (SI), e.g., [4], or on

the folded spectrum (FS), e.g., [71] and the references therein, transformations,

and the subsequent application of one of the above mentioned methods, e.g.,
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PCG, for finding extreme eigenpairs of the transformed problem. Both of the

approaches, however, have potential disadvantages. To apply SI, at each step of

a method, one needs to solve a large linear system involving the shifted matrix

A. The FS-based methods worsen the conditioning of the problem, possibly

increase the clustering in the targeted (transformed) eigenvalues, and are not

easily applicable to generalized eigenproblems, i.e., B 6= I.

In this chapter, we introduce a method, that we refer to as the Precondi-

tioned Locally Minimal Residual method (PLMR), which allows us to compute

an eigenpair, corresponding to the smallest, in the absolute value, eigenvalue of

problem (4.1). The described approach does not require any preliminary trans-

formation of the eigenproblem and is applied directly to the pencil A−λB. The

PLMR method uses an SPD (absolute value) preconditioner to improve its con-

vergence rate and robustness, and is based on the so-called refined procedure [44],

performed in the preconditioner-based inner product, to extract eigenvector ap-

proximations from four-dimensional trial subspaces. Although the current work

is concerned with finding only one eigenpair, the computation of several eigen-

pairs can be done similarly, either by using the method on properly deflated

subspaces, or by generalizing the presented ideas to the subspace iteration.

The present chapter is organized as following. In Section 4.1, we discuss a

concept of an idealized short-term recurrent preconditioned method (eigensolver)

for finding an interior eigenpair. We establish a connection between solution of

symmetric indefinite systems and eigenproblems, which allows us to extend the

results of the previous chapter, including the idea of the absolute value precondi-

tioning, to the case of the eigenvalue computations. In Section 4.2, we describe
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the PLMR method for computing the smallest magnitude eigenvalue and the

corresponding eigenvector. The numerical results, on the example of a model

problem, involving a shifted Laplace operator, are presented in Section 4.3.

4.1 Idealized preconditioned methods for finding an interior

eigenpair

Let us assume that the smallest, in the absolute value, eigenvalue λ = λq

is located in the interior of the spectrum of the pencil A − λB in (4.1), and is

a priori known. Under the last, idealized, assumption, instead of eigenproblem

(4.1) we can consider the problem of finding a null space vector:

(A− λqB)x = 0. (4.2)

The link between methods for solving linear systems and eigenvalue problems

has been emphasized, e.g., in Knyazev [47], or [48], where it is shown that the

choice of a proper linear solver (null space finder) for (4.2) can lead to efficient

methods (eigensolvers) for finding eigenpairs of the pencil A − λB in problem

(4.1). We follow this approach here.

In order to skip unnecessary complications, we assume that all eigenvalues

of A − λB are distinct. The solution of the singular homogeneous symmetric

system (4.2) determines a vector x = vq, which is the eigenvector corresponding

to the eigenvalue λq. We also assume that the vector vq is normalized to have

the unit B-norm, and hence is unique up to a sign. We further consider the

(preconditioned iterative) methods for solving linear system (4.2), and regard

them as the idealized methods for finding the eigenpair (λq, vq)—or, since λq is

trivially found, the eigenvector vq— of eigenproblem (4.1).
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Since the coefficient matrix A− λqB of linear system (4.1) is singular sym-

metric indefinite, we would like to construct iterative schemes, which are suitable

for symmetric problems, converge to a nonzero solution, and allow us using a

preconditioner T ∈ Rn×n to accelerate their convergence. In Sections 3.1 of

Chapter 3, we described a hierarchy of methods designed specifically to solve

symmetric indefinite, though nonsingular, linear systems. It is easy to show,

however, that the techniques of Chapter 3 can also be used for (consistent)

singular systems. In particular, if applied to the singular homogeneous system

(4.2), with an SPD preconditioner T , the methods deliver the (approximate)

eigenvector vq, which lets us consider them as idealized methods for finding

the eigenpair (λq, vq). We further restrict our attention only to the residual-

minimizing methods, i.e., (3.17)–(3.18), (3.21) satisfying (3.24), and precondi-

tioned minimal residual method (3.25)–(3.26) with the inner product defined by

S = T , applied to system (4.2).

Proposition 4.1 Let λq be an eigenvalue of the matrix pencil A−λB of eigen-

problem (4.1). Then, given an SPD preconditioner T , methods (3.17)–(3.18),

(3.21) satisfying (3.24) and (3.25)–(3.26) with the inner product generated by

S = T , applied to the singular homogeneous system (4.2), converge to a nontriv-

ial solution, provided that the initial guess x(0) has a nonzero component from

the null space of A− λqB in the expansion using the basis of the eigenvectors of

the pencil A− λB.

Proof: We prove the proposition only for the case of the preconditioned min-

imal residual method (3.25)–(3.26) with S = T . The convergence of methods
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(3.17)–(3.18) and (3.21), (3.24) can be shown by analogy.

Let x(0) = x
(0)
N + x

(0)
R be the T−1-orthogonal decomposition of the initial

guess vector x(0), such that x
(0)
N ∈ N {T (A− λqB)} and x

(0)
R ∈ R{T (A− λqB)},

whereN {T (A− λqB)} andR{T (A− λqB)} are the null space and the range of

the operator T (A−λqB), respectively. Since N {T (A− λqB)} = N {A− λqB},

we have x
(0)
N ∈ N {A− λqB} and, by assumption, x

(0)
N 6= 0.

From relation (3.25) in the definition of the preconditioned minimal resid-

ual method, we observe that, at any iteration i, the approximation x(i) to the

solution of system (4.2) is of the form

x(i) = x
(0)
N + x

(i)
R , x

(i)
R ∈ x

(0)
R +Ki

(
T (A− λqB), T r

(0)
R

)
, (4.3)

where r
(0)
R = (A−λqB)x

(0)
R = (A−λqB)(x

(0)
N +x

(0)
R ) = (A−λqB)x(0) = r(0), and

x
(i)
R ∈ R{T (A− λqB)} = N {A− λqB}⊥T−1 . In this case, minimization (3.26)

in the definition of the preconditioned minimal residual method with S = T

gives

‖r(i)
R ‖T = min

u∈(A−λqB)Ki

(
T (A−λqB),T r

(0)
R

) ‖r(0)
R − u‖T , (4.4)

where r
(i)
R = (A − λqB)x

(i)
R = (A − λqB)(x

(0)
N + x

(i)
R ) = (A − λqB)x(i) = r(i), by

(4.3). Expression (4.3) shows that the preconditioned minimal residual method,

applied to solve system (4.2), preserves the null space component x
(0)
N for all the

iterates x(i), while, by (4.3)–(4.4), the range components x
(i)
R converge to zero

at the rate delivered by the method applied to find the (unique) zero solution

of the (nonsingular) restricted system

T (A− λqB)|R{T (A−λqB)}x = 0, (4.5)
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with the initial guess x
(0)
R ∈ R{T (A− λqB)} and the preconditioner T . Thus,

the approximations x(i) to the solution of (4.2) converge to x
(0)
N ∈ N {A− λqB}.

The proof of Proposition 4.1 shows that the preconditioned methods, de-

scribed in the previous chapter, applied to system (4.2), deliver a nonzero so-

lution by annihilating the component in the range of T (A− λqB) of the initial

guess, at the rate delivered by the selected method, applied to the restricted

system (4.5). This observation, along with bound (3.9), (3.20), suggests the

following convergence estimate for method (3.17)–(3.18), applied to solve the

singular homogeneous system (4.2):

‖Ax(i+1) − λqBx(i+1)‖T
‖Ax(i) − λqBx(i)‖T

≤ κ̃− 1

κ̃+ 1
< 1, (4.6)

where, assuming that µ1 < µq−1 < µq = 0 < µq+1 < µn are the nonzero

eigenvalues of the preconditioned operator T (A − λqB), the expression for κ̃ is

given by

κ̃ =



(
µn
µq+1

)(
1 +

µn − µq+1

|µq−1|

)
, if |µ1| − |µq−1| ≤ µn − µq+1

(
µ1

µq−1

)(
1 +
|µ1| − |µq−1|

µq+1

)
, if |µ1| − |µq−1| > µn − µq+1.

(4.7)

Bound (4.6)–(4.7) can also be used to estimate the convergence rate of

method (3.21), (3.24), applied to system (4.2), however, as has been discussed

in Subsection 3.1.3 of the previous chapter, it is likely to be pessimistic, and we

can expect, in practice, the reduction in the residual T -norm in (4.6) by a factor

of order

√
κ̃− 1√
κ̃+ 1

, with κ̃ given in (4.7). If the preconditioned minimal residual
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method (3.25)–(3.26) with S = T is applied to solve system (4.2), by (3.27), the

following estimate holds:

‖Ax(i) − λqBx(i)‖T
‖Ax(0) − λqBx(0)‖T

≤ 2

(√
κ̃− 1√
κ̃+ 1

)j

, i = 2j, j = 1, 2, . . . . (4.8)

Remark 4.2 Proposition 4.1, along with bounds (4.6)–(4.7) and (4.7)–(4.8), is

also valid for a symmetric positive semi-definite preconditioner T , such that

R{T} = R{A− λqB} .

In this case, the nonzero solution of (4.2) is delivered by annihilating the com-

ponent in the range of A−λqB of the initial guess x(0). The T -norm is formally

replaced by the T -seminorm.

The preconditioned minimal residual method (3.25)–(3.26) with S = T (pos-

sibly symmetric positive semi-definite, by Remark 4.2), applied to solve (4.2),

with the convergence rate given by (4.8), represents the globally optimal ide-

alized method (in the class of the preconditioned Krylov subspace methods)

for finding the eigenpair (λq, vq). The method is known to admit a short-term

recurrent implementation, e.g., in the form of preconditioned MINRES (PMIN-

RES), orthodir(3) or orthomin(2) [78, 33, 59]. Typically, these implementations

of the preconditioned minimal residual method require one matrix-vector multi-

plication and one application of a preconditioner per iteration, or, equivalently,

according to (3.27), or (4.8), two matrix-vector multiplications and two applica-

tions of a preconditioner to guarantee the reduction of the residual T -norm at

every other step.

As a base version of the idealized eigenvalue solver we suggest to choose a

preconditioned method, which is locally optimal and convergent for any initial
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guess, such that the convergence rate and the amount of the involved computa-

tional work mimic those of the globally optimal preconditioned minimal residual

method (in one of its short-term recurrent formulations). For such base idealized

method we choose (3.21), (3.24), applied to the singular homogeneous system

(4.2). The scheme can be written in the form of the four-term recurrence:

x(i+1) = x(i) + α(i)w(i) + β(i)T
(
Aw(i) − λqBw(i)

)
+ γ(i)p(i),

w(i) = T
(
Ax(i) − λqBx(i)

)
, p(i) = x(i) − x(i−1), p(0) = 0; i = 0, 1, . . . ,

(4.9)

where the iteration parameters α(i), β(i) and γ(i) are chosen to minimize the

T -norm of the new residual vector over the corresponding low-dimensional sub-

space, as in (3.24). The approximation to the eigenvector vq is obtained after a

suitable normalization of the last iterate x(i). The preconditioner T is assumed

to be SPD or, by Remark 4.2, symmetric positive semi-definite. In practice,

however, we only consider preconditioners, which are SPD. The semi-definite

case, given by Remark 4.2, is introduced mainly for theoretical purposes, e.g.,

for defining an optimal preconditioner below. In the next section we use the base

method (4.9), with an SPD preconditioner T , as a starting point for deriving

preconditioned methods for computing interior eigenpairs.

As has been noted above, it is reasonable to expect that idealized scheme

(4.9) can attain the convergence factor of order

√
κ̃− 1√
κ̃+ 1

, with κ̃ given in (4.7),

which, in a sense, according to (4.8), reflects the convergence behavior of the

globally optimal method, moreover, the amount of computations, required to

achieve the reduction in the residual norm, is also essentially the same for both

methods (assuming that the preconditioned minimal residual method is imple-

mented in a short-term recurrent form). If vectors p(i) are removed from (4.9),
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then one gets the scheme corresponding to method (3.17)–(3.18), applied to solve

system (4.2). The latter represents a less computationally expensive idealized

method for finding the eigenpair (λq, vq), which is generally expected to exhibit

a slower convergence. The corresponding bound is given by (4.6).

We remark here that our original intent was to choose the base idealized

solver to be one of the short-term recurrent implementations of the precondi-

tioned minimal residual method, applied to system (4.2). However, the choice

of the preconditioned orthomin(2) as the base method lacked robustness, in the

sense that the algorithm admitted break-downs, or stagnations (if written in the

form of the three-term recurrent relation, as opposed to the standard version

based on two linked two-term recurrences, similarly to PCG, e.g., in [3, 48]),

which is a known drawback of the orthomin family of methods, see, e.g., [33].

At the same time, the robust implementations, i.e., PMINRES and the precon-

ditioned orthodir(3), failed to provide a proper insight into the structure of local

subspaces, used to determine the improved approximations—the recurrent rela-

tions, underlying the algorithms, involve, e.g., the Lanczos vectors for the Krylov

subspaces generated by T (A − λqB) (PMINRES), or the orthogonal direction

vectors (orthodir), which can neither be computed, nor approximated, once we

depart from the idealized framework (with λq already known) considered in the

current section. Therefore, the choice of (4.9) as a base idealized method for

finding the eigenpair (λq, vq) can be viewed as a reasonable compromise. Scheme

(4.9) is no longer globally optimal. However, it reveals the structure of the local

subspaces, used to determine the next iterate, and is convergent for any initial

guess. Moreover, the convergence rate and the amount of computational work

93



can be expected to mimic those (up to the possible occurrence of effects ap-

parently attributed to the superlinear convergence, see, e.g., Figure 3.3) of the

globally optimal preconditioned minimal residual method in one of its robust

short-term recurrent formulations.

Finally, let us discuss the choice of the preconditioner T for the base idealized

method (4.9). The following proposition defines the optimal preconditioner.

Proposition 4.3 Let T = |A− λqB|†, where λq is the eigenvalue of the ma-

trix pencil A − λB in (4.1). Then method (4.9) converges to the eigenvector,

corresponding to λq, in exactly one step, provided that the initial guess has a

nontrivial component from the null space of A− λqB.

Proof: The proof follows from Proposition 4.1, Remark 4.2 and Theorem 3.6.

We note that Proposition 4.3 is valid if p(i) = 0 for all i in (4.9), i.e., if

the idealized solver is given by method (3.17)–(3.18), applied to system (4.2).

We further use the notion of the optimal (symmetric positive semi-definite)

preconditioner to obtain practical SPD preconditioners for the base idealized

scheme (4.9).

The targeted eigenvalue λq is the smallest in the absolute value. In some ap-

plications, its magnitude can be considered relatively negligible, e.g., compared

to a norm of B−1A. In such cases, it is worth trying to replace the theoretically

optimal preconditioner Topt = |A− λqB|† by T = |A|† ≈ Topt = |A− λqB|†. Let

us remark that a similar strategy to justify the choice of a preconditioner has

been successfully used for the LOBPCG method, see [48], for approximating
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extreme eigenpairs of symmetric matrix pencils.

If A is nonsingular, then T = |A|−1, otherwise one can, e.g., introduce a

(relatively small) regularization parameter α ∈ R, and (instead of T = |A|†) set

T = |A+ αI|−1, which is SPD. Since the computation of the exact inverse of the

matrix absolute value may be prohibitive for practical problem sizes, the actual

SPD preconditioners, used in (4.9), can be constructed as some approximations

of |A|−1 (or, |A+ αI|−1, if A is (close to) singular). Such preconditioners, along

with their examples for a model problem, have been introduced in Chapter 3 of

the present manuscript, and are referred to as the absolute value precondition-

ers. In the next sections, we show that exactly the same (SPD) absolute value

preconditioners that are used for solving symmetric indefinite systems can be

utilized for computing interior eigenpairs, corresponding to the smallest, in the

absolute value, eigenvalues of symmetric matrix pencils.

4.2 The Preconditioned Locally Minimal Residual method for

computing interior eigenpairs

In this section, we describe an iterative scheme for computing an eigenpair,

corresponding to the smallest, in the absolute value, eigenvalue of the pencil

A − λB in (4.1). The proposed method is based on a four-term recurrent re-

lation, which means that, at each step, the new eigenvector approximation is

extracted from a four-dimensional trial subspace. The extraction of the ap-

proximate eigenvector represents, essentially, the refined procedure, also called

the refined projection procedure, originally introduced in Jia [44], however, per-

formed in the inner product generated by a properly chosen SPD preconditioner

T . We call the method the Preconditioned Locally Minimal Residual method, or
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PLMR, and discuss its possible variants.

4.2.1 PLMR: The choice of trial subspaces

In the previous section, we have considered several idealized methods for

finding an interior eigenpair, derived assuming that the targeted eigenvalue is

known, as null space finders based on the preconditioned schemes for symmetric

indefinite systems described in Chapter 3. As a base idealized method we have

suggested scheme (4.9), which represents the four-term recurrent relation with

the next approximation x(i+1) determined as an element of

span
{
x(i), w(i), T (Aw(i) − λqBw(i)), x(i−1)

}
, w(i) = T (Ax(i) − λqBx(i)), (4.10)

where λq is the known (smallest in the absolute value) eigenvalue of the pencil

A − λB, x(−1) = 0. The sequence of approximations x(i) in (4.9) converges

(under mild assumptions on the initial guess x(0), see Proposition 3.1) to a

nonzero vector from the null space of A− λqB. After being normalized to have

a unit B-norm, the (approximate) null space vector delivers the (approximate)

eigenvector vq, corresponding to the eigenvalue λq.

Our goal is to obtain a preconditioned method for finding an eigenpair, cor-

responding to the smallest, in the absolute value, eigenvalue of the pencil A−λB

in (4.1), which is similar, in terms of the convergence behavior and the computa-

tional cost, to the base idealized method (4.9). Thus, it is desirable that, at each

step, the new approximation v(i+1) to the eigenvector vq is extracted from the

recurrently defined low-dimensional subspace of form (4.10), with x(i) = v(i) and

x(i−1) = v(i−1) being the current and the previous eigenvector approximations,

respectively. In practice, however, since the exact value of λq is unknown, the

computation of subspaces (4.10) is, generally, impossible. Instead, at step (i+1),
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we suggest to replace the targeted eigenvalue λq in (4.10) by its (asymptotically

quadratic) approximation, i.e., the Rayleigh quotient

λ(i) =
(v(i), Av(i))

(v(i), Bv(i))
, (4.11)

and, given v(i), v(i−1) and an SPD preconditioner T , extract the new eigenvector

approximation v(i+1) from

span
{
v(i), w(i), T (Aw(i) − λ(i)Bw(i)), v(i−1)

}
, w(i) = T (Av(i)−λ(i)Bv(i)), (4.12)

where v(−1) = 0. This can be translated, e.g., into the recurrence of the following

form:

v(i+1) = α(i)v(i) + β(i)w(i) + γ(i)T
(
Aw(i) − λ(i)Bw(i)

)
+ δ(i)p(i),

w(i) = T
(
Av(i) − λ(i)Bv(i)

)
, p(i) = v(i) − α(i−1)v(i−1), p(0) = 0,

i = 0, 1, . . . ;

(4.13)

where α(i), β(i), γ(i) and δ(i) are some iteration parameters, v(0) is the initial

guess. By (4.13), at step (i + 1), the eigenvector approximation v(i+1) is deter-

mined as an element of the subspace

V(i+1) = span
{
v(i), w(i), T (Aw(i) − λ(i)Bw(i)), v(i) − α(i−1)v(i−1)

}
, (4.14)

which is the same (in the exact arithmetic) as (4.12), v(−1) = 0. The choice of

the vector p(i) in (4.13)–(4.14) as a weighted difference of the two consecutive

eigenvector approximations has been motivated by implementational consider-

ations, mainly, to obtain a stable formula, see [48], for computation of trial

subspaces, by calculating p(i) implicitly, i.e.,

p(i+1) = β(i)w(i) + γ(i)T
(
Aw(i) − λ(i)Bw(i)

)
+ δ(i)p(i). (4.15)
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We further discuss the selection of the iteration parameters in (4.13).

4.2.2 PLMR: The choice of iteration parameters

Given a k-dimensional subspace V ⊆ Rn, we want to extract an approxima-

tion v ∈ V to the eigenvector vq, corresponding to the smallest, in the absolute

value, eigenvalue λq of (4.1).

Let us assume that λ̃ ∈ R is some approximation to the targeted eigenvalue

λq, i.e., λ̃ ≈ λq. In this case, one can attempt to extract the corresponding

eigenvector approximation v ∈ V by satisfying the following optimality condi-

tion:

v = argmin
z∈V,‖z‖B=1

‖Az − λ̃Bz‖, (4.16)

where ‖z‖2
B = (z,Bz), and ‖z‖ = ‖z‖I is the 2-norm. The minimization princi-

ple in (4.16), in fact, defines the refined procedure, also called the refined projec-

tion procedure, which is straightforwardly extended to the case of the generalized

eigenproblem (the original condition in [44] was formulated for B = I). The

minimizer v in (4.16) is called the refined approximate eigenvector.

Given an SPD preconditioner T , we modify condition (4.16) to perform the

minimization in the preconditioner-based T -norm, rather than in the standard

2-norm, i.e.,

v = argmin
z∈V,‖z‖B=1

‖Az − λ̃Bz‖T , (4.17)

where ‖z‖2
T = (z, Tz). Assuming that the matrix V ∈ Rn×k is such that col(V ) =

V , where col(V ) denotes the column space of V , and, hence, any z ∈ V is of the

98



form z = V y, for some y ∈ Rk, we get

‖Az − λ̃Bz‖2
T = (Az − λ̃Bz, T (Az − λ̃Bz)) = (z, (A− λ̃B)T (A− λ̃B)z)

= (V y, (A− λ̃B)T (A− λ̃B)V y)

= (y, V ∗(A− λ̃B)T (A− λ̃B)V y). (4.18)

Thus, (4.17) can be replaced by the problem of finding the minimizer ymin ∈ Rk,

such that

ymin = argmin
y∈Rk,‖V y‖B=1

(y, V ∗(A− λ̃B)T (A− λ̃B)V y)

= argmin
y∈Rk

(y, V ∗(A− λ̃B)T (A− λ̃B)V y)

(V y,BV y)

= argmin
y∈Rk

(y, V ∗(A− λ̃B)T (A− λ̃B)V y)

(y, V ∗BV y)
,

which is equivalent to the problem of finding the eigenvector ymin, corresponding

to the smallest eigenvalue θ2
min, of the k-by-k generalized symmetric eigenvalue

problem

(V ∗(A− λ̃B)T (A− λ̃B)V )y = θ2(V ∗BV )y. (4.19)

The square root of the smallest eigenvalue in (4.19), i.e., θmin, gives the minimal

value of norm (4.17), while the eigenvector ymin determines the corresponding

minimizer

v = V ymin, ‖v‖B = 1, (4.20)

which we set as the new eigenvector approximation. The value of θmin is typically

discarded.

As has been previously discussed, at a general step (i + 1), according to

(4.14), we choose the trial subspaces as spans of four vectors, i.e., V = V(i+1),
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and k = 4. The new eigenvector approximation v = v(i+1), satisfying (4.17)

for a (presumably) given λ̃ = λ̃(i), is determined by (4.20) after finding the

eigenvector ymin, corresponding to the smallest eigenvalue of the 4-by-4 gener-

alized eigenvalue problem (4.19), where the matrix V has vectors from (4.14)

as columns. The iteration parameters α(i), β(i), γ(i) and δ(i) in (4.13) are then

given as the components of the vector ymin. We note that, at the initial step

(i = 0), the trial subspace (4.14) is spanned by three vectors, i.e., k = 3, and,

hence, the described extraction of the eigenvector approximation reduces to the

solution of the 3-by-3 eigenvalue problem (4.19). Let us remark that at each

step minimization principle (4.17) with V = V(i+1) and λ̃ = λ̃(i) ≈ λq mimics op-

timality condition (3.24) underlying the base idealized method. The remaining

question is how to find the eigenvalue approximations λ̃ = λ̃(i) in (4.17)?

If the current approximation v(i) is already close to the desired eigenvector

vq, then one can choose to set λ̃ = λ̃(i) in (4.17) into the corresponding value of

the Rayleigh quotient (4.11), i.e.,

λ̃(i) = λ(i).

In general, however, the approximation v(i) can be far from the targeted eigen-

vector. In this case, assuming that the SPD operator B in (4.1) can be efficiently

inverted, prior to fulfilling (4.17), we suggest to find an estimate λ̃ = λ̃(i) by per-

forming the Rayleigh-Ritz procedure for the pencil

AB−1Av = λ2Bv, (4.21)

on the trial subspace V = V(i+1), defined in (4.14), and available at the step

(i + 1). Then, if ṽ = ṽ(i) is the Ritz vector, corresponding to the smallest Ritz
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value of (4.21) on V , we set λ̃ = λ̃(i) to the value of the Rayleigh quotient for

problem (4.1), evaluated at ṽ(i), i.e.,

λ̃(i) =

(
ṽ(i), Aṽ(i)

)
(ṽ(i), Bṽ(i))

, (4.22)

and discard the Ritz value. We note that if B = I, i.e., (4.1) is the standard

eigenproblem, the above described approach for estimating λ̃ is the Rayleigh-

Ritz procedure for A2 on the given subspace.

We now summarize the whole approach in the following algorithm.

Algorithm 4.4 (The PLMR method)

Input: starting vector v(0), functions to compute Av, Bv, B−1v and Tv

Output: approximation to the eigenpair (λq, vq), such that |λq| = min
j
|λj|

1. Start: Select v(0) and set p(0) = 0

2. Iterate: For i = 0, 1, . . . , Until Convergence Do:

3. λ(i) :=
(
v(i), Av(i)

)
/
(
v(i), Bv(i)

)
, r := Av(i) − λ(i)Bv(i)

4. w(i) := Tr, s(i) := T (Aw(i) − λ(i)Bw(i))

5. Use the Rayleigh-Ritz method for (4.21) on the trial subspace

span
{
v(i), w(i), s(i), p(i)

}
6. λ̃ := (ṽ, Aṽ) / (ṽ, Bṽ)

(ṽ is the Ritz vector corresponding to the smallest Ritz value in 5.)

7. If i > 0, then V :=
[
v(i);w(i); s(i); p(i)

]
∈ Rn×4;

else V :=
[
v(i);w(i); s(i)

]
∈ Rn×3
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8. Solve (4.19) and set (α(i) β(i) γ(i) δ(i)) := y∗min

9. v(i+1) := α(i)v(i) + β(i)w(i) + γ(i)s(i) + δ(i)p(i)

10. p(i+1) := β(i)w(i) + γ(i)s(i) + δ(i)p(i)

11. EndDo

As has been previously suggested, if the pair (λ(i), v(i)) is near the exact solution

(λq, vq), then one can skip step 5 of Algorithm 4.4, and set λ̃ to the current

value of the Rayleigh quotient λ(i) at step 6. We also remark here that, as the

approximations v(i) get closer to the eigenvector vq, it may become necessary to

perform B-orthogonalization on the trial subspaces to achieve a better numerical

stability and a higher attainable accuracy of the method. We demonstrate this

in our numerical tests of the next section.

We, finally, note that, instead of satisfying the T -norm optimality condi-

tion (4.17), a possible approach to extract an eigenvector approximation in

Algorithm 4.4 could be to use the Rayleigh-Ritz procedure for (4.21) on the

trial subspace (4.14). The resulting algorithm, however, did not bring any im-

provements to the method, given by Algorithm 4.4, and, in many cases, led to

significantly less satisfactory convergence behavior, e.g., demonstrating a lower

convergence rate or stagnations. The observed robustness of Algorithm 4.4 with

a suitable preconditioner, on the example of the model problem below, can, in

part, be attributed to the properly chosen, convergent, base null space finder

(4.9), discussed in Section 4.1.
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4.3 Numerical examples

In this section we apply the PLMR method, given by Algorithm 4.4, to the

model problem of approximating an eigenpair of the discrete negative Laplace

operator L, which corresponds to the eigenvalue, closest to a given shift value c2.

We assume that the operator is discretized using the 5-point FD stencil on the

unit square domain, with Dirichlet boundary conditions. This problem, in fact,

corresponds to the task of finding an approximation to the, generally, interior

eigenpair (λq, vq) of the shifted negative Laplacian, L− c2I, which corresponds

to its smallest, in the absolute value, eigenvalue. In other words, we consider

the symmetric eigenvalue problem

(
L− c2I

)
v = λv, (4.23)

where the desired eigenpair (λq, vq) is such that |λq| = min
j
|λj|, and λj are the

eigenvalues of L− c2I.

Since the exact eigenvalues of the (shifted) Laplacian in (4.23) can be found

using explicit expressions, see, e.g., [33], for our theoretical purposes, we can fix

the desired value of λq and, in the spirit of Section 4.1, consider the problem

of finding a nonzero null space vector of operator (L − c2I) − λqI. In order

to control the performance of the PLMR algorithm, we suggest to compare its

convergence behavior versus PMINRES, applied to the singular homogeneous

system ((
L− c2I

)
− λqI

)
x = 0, (4.24)
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and versus the base idealized eigensolver (4.9), with A replaced by L− c2I (i.e.,

versus method (3.21), (3.24), applied to (4.24)). In this framework, the globally

optimal PMINRES algorithm provides the pattern of the theoretically optimal

convergence (in the class of the Krylov subspace methods), while the locally

optimal method (4.9), with A = L − c2I, delivers a benchmark for the actual

convergence rate of the PLMR algorithm. We further refer to the version of

PMINRES as “MINRESNULL” and call method (4.9) “LO-BASE”. We remark

that the code for “MINRESNULL”, used in our numerical experiments, has

been obtained by modifying the matlab funcion “minres.m” to skip the check

for the zero right-hand side and deliver the residual norms computed at iterates,

normalized to have a unit length.

As has been discussed in Section 4.1, as an SPD preconditioner T for the

PLMR method, applied to eigenproblem (4.23), as well as for the introduced

above “control” methods, applied to system (4.24), one can choose an approxi-

mation to |L− c2I|−1
. We recall that such (absolute value) preconditioner has

already been constructed for the model linear system (3.34) with the coefficient

matrix L − c2I, in Chapter 3, using the MG approach, see Algorithm 3.9. It

is remarkable that the absolute value preconditioners, constructed for solving

symmetric indefinite linear systems, can be used within the PLMR method for

approximating the eigenpairs, corresponding to the interior eigenvalues, of the

respective operators. Thus, as a preconditioner for problem (4.23), we use Al-

gorithm 3.9, described in the previous chapter.

Figure 4.1 illustrates the convergence of the PLMR method, applied to prob-

lem (4.23) with different values of the shifts c2, which give different smallest
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Figure 4.1: Comparison of the PLMR method with the MG absolute value pre-
conditioner versus the idealized eigenvalue solvers, applied to the model eigen-
problem of the size n = (27−1)2 ≈ 1.6×104. The targeted eigenpairs correspond
to the smallest magnitude eigenvalues of the shifted discrete negative Laplacian
(from top left to bottom left, clockwise): λ13 ≈ −6.33 × 10−4, λ13 ≈ −2.7426,
λ15 ≈ −3.4268 and λ17 ≈ 7.19 × 10−4, given by shift values c2 = 197.258, 200,
250 and 256.299, respectively.
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magnitude eigenvalues. The Laplace operator is discretized on the grid of the

mesh size h = 2−7, initial eigenvector approximations are randomly chosen. The

MG components for the absolute value preconditioner are defined similarly to

Subsection 3.2.2.2, with one step of the 4/5-damped Jacobi iteration as a (pre-

and post-) smoother, standard coarsening scheme with the coarsest grid of the

mesh size 2−4, full weighting for the restriction, and piecewise multilinear in-

terpolation for the prolongation. The norms ‖(L − c2I)v(i) − λ(i)v(i)‖ of the

residual vectors for problem (4.23), generated at each step of the PLMR algo-

rithm, are compared to the norms of the residuals
‖((L− c2I)− λqI)x(i)‖

‖x(i)‖
for

problem (4.24), with the corresponding value of λq, evaluated at the normalized

iterates
x(i)

‖x(i)‖
, produced by “MINRESNULL” and “LO-BASE”. We note that,

by (3.27), or (4.8), PMINRES generally requires at least two steps to guarantee

the reduction in the residual norm. Therefore, the plotted values of the “MIN-

RESNULL” residual norms in Figure 4.1 are obtained by measuring the norms,

produced by the PMINRES method, after every other step. In other words,

the “MINRESNULL” residual norm at step i, in Figure 4.1, corresponds to the

norm of the PMINRES algorithm, applied to (4.24), at step j = 2i, evaluated

at the normalized iterate.

In Figure 4.1 we observe that the PLMR method converges, essentially,

at the same rate as the idealized base eigensolver “LO-BASE”. The globally

optimal “MINRESNULL”, at a number of its initial steps, demonstrates the

similar convergence behavior, however, accelerates, possibly, with the occurrence

of the superlinear convergence, which is frequently noticed for preconditioned

globally optimal Krylov subspace methods, e.g., [9, 62]. In fact, it is generally
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hard to expect the superlinear convergence for the PLMR algorithm, which is

likely to be the price, paid for the departure from the global optimality.

In the next set of tests, illustrated in Figure 4.2, we examine the effects of

orthogonalization on the trial subspaces, prior to performing steps 5 and 7 of

Algorithm 4.4. We denote the version of the PLMR method with the orthogo-

nalization by “PLMR-ORTH”. Similarly to the numerical examples above, we

seek to approximate the smallest, in the absolute value, eigenvalue, and the cor-

responding eigenvector, of the shifted discrete negative Laplacian in (4.23), with

different shift values. Algorithm 3.9 is used as a preconditioner for both PLMR

versions, with the same MG components as in the previous test.
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Figure 4.2: Comparison of the PLMR method with and without orthogonal-
ization on the trial subspaces. Both versions of the method are applied to the
model eigenproblem of the size n = (27−1)2 ≈ 1.6×104 and use the MG absolute
value preconditioner. The targeted eigenpairs correspond to the smallest magni-
tude eigenvalues of the shifted discrete negative Laplacian: λ13 ≈ −2.7426 (left)
and λ15 ≈ −3.4268 (right), given by shift values c2 = 200 and 250, respectively.

In Figure 4.2 we observe that, as the approximate eigenpairs get close to

the exact solution of (4.23), the PLMR method, given by Algorithm 4.4, begins

to exhibit instability, which can be fixed, however, by orthogonalizing the trial
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subspaces. We relate this phenomenon to the one observed for the LOBPCG

algorithm, and addressed, e.g., in [48, 38]. The nature of the possible instability

is explained by an increasing ill-conditioning of the chosen basis of trial subspaces

(4.14), as approximations v(i) converge to the desired eigenvector.

We note, however, that for problems, arising from discretizations of the

underlying equations of mathematical physics, the required accuracy of the so-

lution of the discrete problem is limited by the discretization error. For this

reason, in practice, the PLMR algotithm can be expected to deliver the desired

approximations without orthogonalizing the trial subspaces, i.e., as given by

Algorithm 4.4.

4.4 Conclusions

In this chapter we have proposed a novel approach, which we call the PLMR

method, for computing an approximation of the smallest, in the absolute value,

eigenvalue and the corresponding eigenvector of a symmetric matrix pencil. The

method represents a four-term recurrent iterative scheme, with iteration param-

eters determined by solving small auxiliary eigenvalue problems. The method

is preconditioned. It requires an SPD preconditioner, which can be constructed

according to the idea of the absolute value preconditioning described in the con-

text of symmetric indefinite linear systems in the previous chapter. In fact, this

allows to use the same SPD preconditioners for both symmetric indefinite linear

systems and the corresponding interior eigenvalue problems.

We have applied the PLMR method to approximate an eigenpair of the

two-dimensional discrete negative Laplace operator, which corresponds to the

eigenvalue, closest to a given shift value. As a preconditioner we have reused
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the (geometric) MG absolute value preconditioner, constructed for the corre-

sponding linear system (the model problem) in the previous chapter. For a

significant number of the initial steps, the PLMR method has demonstrated

convergence behavior, comparable to that of an idealized optimal preconditioned

eigenvalue solver.

The current and future work includes the extension of the present version

of the PLMR algorithm to the block (subspace) iteration, its theoretical study,

development of relevant codes, and investigation of their performance, including

comparisons with the existing techniques, for various application areas.
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5. Preconditioned singular value computations

Let us consider the problem of finding triplets (σ, v, u), such thatA
∗u= σv

Av = σu
, A ∈ Rm×n, σ ∈ R, u ∈ Rm, v ∈ Rn, ‖u‖ = ‖v‖ = 1. (5.1)

We call problem (5.1) the singular value problem, and assume, without loss of

generality, that m ≥ n. Throughout the chapter, ‖ · ‖ denotes the Euclidean

norm, defined on the vector space of the corresponding dimension.

The existence of the solution of problem (5.1) follows directly from the

singular value decomposition (SVD) of a matrix A, see, e.g., [42], and is given

by n triplets (σj, vj, uj), corresponding to the singular values σj of A, such that

σ1 ≥ σ2 ≥ . . . ≥ σn ≥ 0.

The unit vectors vj and uj are called the right and left singular vectors, cor-

responding to the singular value σj, respectively, and are such that (vi, vj) =

(ui, uj) = 0, i 6= j. (·, ·) denotes the standard inner product. We further call

(σj, vj, uj) the singular triplets.

Problems of computing singular triplets, or finding the SVD of a matrix,

are known to appear in a number of application areas, such as information

retrieval, image and signal processing, seismic tomography; see [11]. Sometimes

the singular value problems appear as a part of more complex computational

tasks, e.g., such as constructing low-rank matrix approximations, solving least-

squares problems, estimating matrix rank, computation of pseudospectrum, etc.
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For small and dense matrices A, there exists a variety of efficient methods,

which allow computing the SVD, i.e., delivering (possibly all) singular triplets

of A in (5.1). Examples of such methods include: QR algorithm, DQDS, divide-

and-conquer, Jacobi’s method, etc.; see, e.g., [18, 28, 57, 19, 20, 1, 4]. In the

present work, however, we assume A to be large and sparse. Moreover, only a

tiny fraction of singular triplets, corresponding to the extreme singular values, is

required. In this framework, the above mentioned methods can be inapplicable,

which motivates the search for novel techniques.

Standard approaches for approximating singular triplets of large sparse ma-

trices are based on substituting singular value problem (5.1) by a symmetric

eigenvalue problem. As the first option, (5.1) can be replaced by the problem of

finding eigenpairs of the matrix A∗A, i.e.,

A∗Av = σ2v. (5.2)

In this case, the eigenvalues of problem (5.2) are the squared singular values of A

in (5.1), while the corresponding eigenvectors, normalized to have a unit norm,

are the right singular vectors. The left singular vectors are then computed as

following,

u =
Av

‖Av‖
=
Av

σ
. (5.3)

As the second option, instead of (5.1), one can consider the symmetric eigen-

problem  0 A∗

A 0


︸ ︷︷ ︸

C

v

u

 = λ

v

u

 . (5.4)
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The relation between (5.4) and singular value problem (5.1) is given by Jordan–

Wielandt theorem, see, e.g., [66, 42].

Theorem 5.1 (Jordan-Wielandt) The augmented matrix C ∈ R(m+n)×(m+n)

in problem (5.4) has eigenvalues−σ1, . . . ,−σn, 0, . . . , 0︸ ︷︷ ︸
m−n

, σn, . . . , σ1

 , (5.5)

and eigenvectors, normalized to have a unit norm,

1√
2

 vj

±uj

 , j = 1, . . . , n, (5.6)

corresponding to ±σj, where vj and uj are the right and left singular vectors of

A in (5.1), respectively.

Additionally, if m > n, then eigenvectors corresponding to the remaining

(m− n) zero eigenvalues are of the form 0

ũj

 , n+ 1, . . . ,m, (5.7)

where vectors ũj ∈ Rm can be chosen to be orthonormal.

Theorem 5.1 shows that the eigenvalues of C are plus and minus the singular

values of A in (5.1). The singular vectors can be extracted from the correspond-

ing eigenvectors in (5.6). The additional zero eigenvalue of multiplicity (m− n)

in (5.5) is entailed by the (part of) null space of the matrix A∗ ∈ Rn×m, which

naturally arises if n < m, regardless of the matrix rank. This (part of) null

space of A∗ is spanned by vectors ũj, which determine the eigenvectors in (5.7),

corresponding to the zero eigenvalue.
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Many of the existing algorithms for finding singular triplets, corresponding

to the extreme singular values of large matrices, are based on the methods for

solving symmetric eigenvalue problems, e.g., the Lanczos methods, the David-

son methods, shift-and-invert, and trace minimization techniques, specifically

tuned for problem (5.2) or (5.4); see [11]. Usually, such algorithms are able to

produce satisfactory results for computing the largest singular values and the

corresponding singular vectors (the largest singular triplets). However, their

application for finding the triplets corresponding to the smallest singular val-

ues (the smallest singular triplets), may often result in slow convergence and

a lack of robustness. In this chapter, we focus on approximating the smallest

singular triplet (σn, vn, un) of the matrix A in (5.1), which typically represents

a challenging computational problem.

If the smallest singular triplet is approximated by a standard approach, i.e.,

using one of the formulations based on a symmetric eigenvalue problem, it may

be considered favorable to replace singular value problem (5.1) by (5.2)–(5.3).

In this case, the smallest eigenvalue of the SPD matrix A∗A is σ2
n, and the

corresponding eigenvector vn is, simultaneously, the right singular vector of A.

The left singular vector un is computed by (5.3).

In practice, the approach based on computing the eigenpair (σ2
n, vn) of the

matrix A∗A, using one of the available iterative eigenvalue solvers, may not lead

to a satisfactory algorithm. The reasons for possible failures are commonly re-

lated to the observation that eigenproblem (5.2) can suffer from the increased

clustering of its smallest eigenvalues, compared to the distribution of the corre-

sponding singular values of A. The latter adversely effects the convergence be-
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havior of many iterative eigenvalue solvers, e.g., based on the Lanczos method,

see [56]. Further, forming the matrix of the normal equations A∗A squares the

condition number of the initial problem, i.e., (5.1), which is generally undesirable

for numerical algorithms, and can prohibit obtaining approximate solutions of

the required accuracy. Also, the increased ill-conditioning may noticeably slow

down the eigenvalue solvers, whose convergence depends on the condition num-

ber of the coefficient matrix, e.g., CG methods, see [47, 54].

A possible remedy may be to use a preconditioned method for finding the

eigenpair (σ2
n, vn) of (5.2), e.g., the locally optimal preconditioned CG method,

see [48], if a suitable preconditioner for A∗A is available. However, even if the

method delivers a satisfactory approximation to the targeted vector vn, formula

(5.3) may result in an inaccurate approximation to the left singular vector un,

see [40] for an example. The subsequent refinement procedures, e.g., based on

a shift-and-invert approach, can be computationally expensive or inapplicable.

At the same time, let us note that eigenvalue problem (5.4) avoids potential

difficulties caused by the squaring of small singular values. In fact, formulation

(5.4) can be viewed as a matrix form of singular value problem (5.1), with

σ, formally, replaced by λ. In this sense, the approach, based on finding the

eigenpair corresponding to the eigenvalue σn (or, −σn) of the augmented matrix

C in (5.4), may be regarded as more natural. The main complication here,

however, lies in the fact that the desired eigenvalues λ = ±σn are far in the

interior of the spectrum of the augmented matrix C.

In Chapter 4, we have described the preconditioned method PLMR for find-

ing the smallest magnitude eigenvalue of a symmetric matrix. In fact, given a
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suitable preconditioner, for square, or rectangular and rank-deficient, matrices

A, the method can be directly applied to find the smallest, in the absolute value,

eigenvalue of (5.4), i.e., ±σn. The eigenpair, corresponding to this eigenvalue,

then delivers the smallest singular triplet. We note that in the case, where A

is full-rank and rectangular, the smallest magnitude eigenvalue in (5.4) is not

±σn 6= 0, but zero of multiplicity (m − n), see (5.5). This makes PLMR no

longer directly applicable. Nevertheless, if ran on a properly chosen subspace,

i.e., the orthogonal complement of the null space of the augmented matrix C,

or, possibly, generalized to a subspace iteration, if m ≈ n, the method can also

deliver the targeted smallest triplet.

The known disadvantage of the approach for computing the singular triplets,

which is based on using a method for finding eigenpairs of problem (5.4), is re-

lated to the treatment of the so-called “unbalanced” eigenvector approximations

for problem (5.4), i.e., (unit) vectors of formv

u

 , v ∈ Rn, u ∈ Rm, (5.8)

such that the norms of the decoupled components (subvectors) v and u are

significantly different, e.g., ‖v‖ >> ‖u‖. Usually, at each step of a method, the

eigenvector approximations of the above form are chosen from a certain subspace

of Rm+n, using an optimization principle, e.g., (4.17) for the PLMR algorithm.

The specificity of the singular value problem (5.1) typically requires obtaining

unit approximations to the corresponding singular vectors at each iteration. In

other words, instead of approximate eigenvectors in (5.8), it requires obtaining
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vectors αv
βu

 , α = 1/‖v‖, β = 1/‖u‖, α 6= β,

which no longer satisfy the optimization principle, used for extracting the ap-

proximate eigenvector for problem (5.4). The effects, caused by this departure

from the optimization principle, can be especially noticeable at initial steps,

where the approximate eigenvector is significantly far from the exact solution.

Finally, we note that there exists a number of methods for computing sin-

gular triplets of large matrices, which are not based on applying techniques for

solving symmetric eigenvalue problems to (5.2) and (5.4), and directly target

singular value problem (5.1). Many of such methods are based on the idea of

Golub-Kahan-Lanczos bidiagonalization, introduced in [31]; see, e.g., [45, 49, 37].

Several recent works consider extensions of the Jacobi-Davidson type approach

for computing a number of singular triplets; e.g., [40, 41]. Though some progress

has been recently reported, the problem of finding the smallest singular triplets

still remains computationally challenging and difficult.

In this chapter, we describe a new technique, that we call PLMR-SVD, to

compute the smallest singular triplet. The proposed approach is based on the

idea of using two separate low-dimensional trial subspaces for extracting ap-

proximations to the right and left singular vectors. Importantly, the suggested

method is preconditioned, i.e., it allows using two operators, which, if prop-

erly chosen, can noticeably improve the convergence rate and robustness of the

suggested scheme.

116



We note that the framework for introducing the method is similar to the

one described in Chapter 4, where we derived the PLMR algorithm for com-

puting an interior eigenpair. Thus, first, in Section 5.1, we describe the base

idealized method for computing the singular triplet. Next, in Section 5.2, we

use ideas, underlying the base method, to obtain the PLMR-SVD algorithm.

Finally, in Section 5.3, we apply the new method to find the smallest singular

triplet of the two-dimensional discrete gradient operator, using a multilevel SPD

preconditioner.

5.1 Idealized preconditioned methods for finding a singular triplet

As has been previously observed, problem (5.4) can be formally viewed as

singular value problem (5.1), written in the matrix form, with σ replaced by λ.

Then, following the approach of Section 4.1 of the previous chapter, we assume

that the singular value σ = σn is a priori known, and consider the problem of

finding a null space vector of the augmented matrix C, shifted by the value of

σn, i.e., −σnIn A∗

A −σnIm


︸ ︷︷ ︸

C−σnI

x1

x2


︸ ︷︷ ︸

x

= 0, (5.9)

where x1 ∈ Rn, x2 ∈ Rm; In ∈ Rn×n, Im ∈ Rm×m, and I ∈ R(m+n)×(m+n) are the

identity matrices of corresponding dimensions.

By Theorem 5.1, σn is an eigenvalue of the augmented matrix C in (5.4), so

the shifted matrix C − σnI ∈ R(m+n)×(m+n) is singular, and hence homogeneous

system (5.9) has a nontrivial solution, which (after a suitable normalization)

delivers the right and left singular vectors corresponding to σn, i.e., un and vn.
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In order to simplify the presentation, we assume that the singular values σj of

A are distinct.

The coefficient matrix C−σnI in (5.9) is symmetric and (highly) indefinite.

We consider preconditioned iterative methods for finding a nonzero solution of

(5.9) as the idealized methods for computing a singular triplet. In Chapter 3,

we have introduced a range of methods, e.g., (3.17)–(3.18), (3.21) and (3.24),

(3.25)–(3.26) with S = T , for solving nonsingular symmetric indefinite systems

with SPD preconditioners. According to Proposition 4.1 of Chapter 4, under

a mild assumption on the initial guess, these methods can be used to find a

nonzero null space vector in (5.9). In this case, given an SPD, or, by Remark 4.2,

possibly a symmetric positive semi-definite, preconditioner T ∈ R(m+n)×(m+n),

the corresponding convergence bounds, with A replaced by C, λq by σn, and

B = I, are stated in (4.6), (4.8).

Similarly to Section 4.1 of the previous chapter, as the base idealized method

for computing the smallest singular triplet, we choose (3.21), (3.24) applied to

solve homogeneous system (5.9). We first consider a correct setting for the

chosen method and then define a proper preconditioner. We note that the

discussion below is also valid for other idealized methods, i.e., (3.17)–(3.18) and

(3.25)–(3.26) with S = T , applied to find a nonzero solution of system (5.9).

Let us assume that σn 6= 0 and m > n, i.e., the matrix A in (5.9), or in

(5.1), is of full-rank and rectangular. In this case, according to Theorem 5.1,

the spectrum of the augmented matrix C in (5.4) contains the zero eigenvalue

of multiplicity (m− n), entailed by the natural null space of A∗. Shifting C by

the value of σn then generates the small eigenvalue −σn of multiplicity (m−n).

118



The presence of this eigenvalue in the spectrum of the matrix C − σnI in (5.9)

is merely an artifact of the rectangular structure of A. In general, unless a

preconditioner of an extremely high quality is available, the small eigenvalue

−σn negatively effects the convergence of an idealized method by significantly

increasing the effective condition number of C − σnI. The drawback, however,

can be avoided by forcing the chosen base idealized iteration, i.e., method (3.21),

(3.24), applied to solve system (5.9), to run on the orthogonal complement of

the eigenspace corresponding to the unwanted eigenvalue −σn of C − σnI. This

orthogonal complement is, in fact, the range of the augmented matrix C in (5.4),

R{C} =


x1

x2

 : x1 ∈ Rn, x2 ∈ R{A}

 ⊂ Rm+n. (5.10)

Since the eigenspace corresponding to the eigenvalue −σn of C − σnI is the

same as the null space of C, their orthogonality to the range of C is a direct

consequence of the fact that

R{C} = N {C}⊥ .

We remark that the restriction of iterations to the range of the augmented

matrix C, i.e., to subspace R{C} in (5.10), is natural, since the solution of

system (5.9) itself belongs to R{C}. In practice, this restriction can be fulfilled

by choosing the initial guess from R{C}, and requiring the preconditioner T to

have R{C} as its invariant subspace. We note that, in this case, it is sufficient

for T to be SPD, or, by Remark 4.2, possibly, symmetric positive semi-definite,

at least on R{C}. We further consider only the choice of preconditioners, which
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are SPD on R{C}, i.e., such that

R
{
T |R{C}

}
= R{C} and T |R{C} =

(
T |R{C}

)∗
> 0, T ∈ R(m+n)×(m+n).

(5.11)

The semi-definite case, given by Remark 4.2, is used mainly for theoretical

purposes, e.g., for defining an optimal preconditioner for problem (5.9).

We note that the considered case, where σn 6= 0 and m > n, is probably

the most frequently addressed in singular value computations. In other cases,

i.e., if m = n, or σn = 0 and m > n, the above discussion simplifies, since

no “spurious” small eigenvalues are generated for C − σnI. Hence, for these

problem parameters, the base idealized method for computing the smallest sin-

gular triplet is scheme (3.21), (3.24), straightforwardly applied to solve (5.9),

with a random initial guess and an SPD preconditioner T . We now discuss the

construction of the appropriate preconditioners.

According to Proposition 4.3 in the previous chapter, the optimal precon-

ditioner for the base idealized method (3.21), (3.24), applied to solve (5.9),

regardless of the matrix rank and dimensions, is defined as

Topt = |C − σnI|† . (5.12)

The exact computation of the optimal preconditioner Topt in (5.12) is generally

infeasible. For many practical cases, the value of σn is relatively small, e.g.,

compared to the norm of A. In these situations we suggest replacing the the-

oretically optimal preconditioner Topt = |C − σnI|† by |C|† ≈ Topt. Therefore,

as reasonable (absolute value) preconditioners T for the base idealized method

for finding the smallest singular triplet, we can choose approximations to |C|†.
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In the case, where σn 6= 0 and m > n, such approximations need to satisfy

assumptions in (5.11). In particular, this requires preconditioners T to be SPD

at least on the range of the augmented matrix, i.e., on subspace (5.10). In the

remaining cases, if m = n, or σn = 0 and m > n, the preconditioners T are only

required to be SPD.

Let us observe that the absolute value of the augmented matrix |C| has a

block-diagonal form,

|C| =
(
C2
) 1

2 =

(A∗A)
1
2 0

0 (AA∗)
1
2

 . (5.13)

We note that the diagonal element (A∗A)
1
2 is, in fact, a symmetric positive

(semi- ) definite factor in the polar decomposition of A (further referred to

as “the polar factor”); see, e.g., [42]. If A is square, then (AA∗)
1
2 is also a

positive (semi-) definite polar factor, however, coming from the so-called left

polar decomposition of A.

Structure (5.13) of |C| motivates the following block-diagonal form of a

preconditioner T for the base idealized method,

T =

T1 0

0 T2

 , (5.14)

where T1 ∈ Rn×n and T2 ∈ Rm×m. Since the preconditioner T needs to be chosen

to approximate |C|†, the diagonal blocks in (5.14) are such that T1 ≈
(

(A∗A)
1
2

)†
and T2 ≈

(
(AA∗)

1
2

)†
.

If σn 6= 0 and m > n, according to (5.10) and (5.11), the block T1 must be

SPD, while T2 has to be SPD at least on the range of A, which represents its
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invariant subspace, i.e.,

R
{
T2|R{A}

}
= R{A} and T2|R{A} =

(
T2|R{A}

)∗
> 0, T2 ∈ Rm×m. (5.15)

Thus, if σn 6= 0 and m > n, then T1 ≈ (A∗A)−
1
2 , while, for example, T2 ≈

P (AA∗ + αIm)−
1
2P , where P is an orthogonal projector on the range of A, and

α ∈ R is a small regularization parameter.

We note that in other cases, i.e., if m = n, or σn = 0 and m > n, blocks

T1 and T2 must be SPD. In particular, if both A∗A and AA∗ are nonsingular,

then T1 ≈ (A∗A)−
1
2 and T2 ≈ (AA∗)−

1
2 , otherwise, e.g., one can choose T1 ≈

(A∗A+ αIn)−
1
2 and T2 ≈ (AA∗ + αIm)−

1
2 .

Finally, the block-diagonal structure of the preconditioner T in (5.14) allows

us to write the chosen base idealized method for finding the smallest singular

triplet, i.e., scheme (3.21), (3.24), applied to solve (5.9), in the following “de-

coupled” form,

x
(i+1)
1 = x

(i)
1 + α(i)w

(i)
1 + β(i)T1

(
A∗w

(i)
2 − σnw

(i)
1

)
+ γ(i)p

(i)
1 , p

(i)
1 = x

(i)
1 − x

(i−1)
1 ,

x
(i+1)
2 = x

(i)
2 + α(i)w

(i)
2 + β(i)T2

(
Aw

(i)
1 − σnw

(i)
2

)
+ γ(i)p

(i)
2 , p

(i)
2 = x

(i)
2 − x

(i−1)
2 ,

w
(i)
1 = T1

(
A∗x

(i)
2 − σnx

(i)
1

)
, w

(i)
2 = T2

(
Ax

(i)
1 − σnx

(i)
2

)
, p

(0)
1 = 0, p

(0)
2 = 0,

i = 0, 1, . . . ;

(5.16)

where the parameters α(i), β(i) and γ(i) are chosen to minimize the T -norm of

the residual vector for the problem (5.9) over the corresponding low-dimensional

subspace, as in (3.24). The iteration of form (5.16) has been obtained by splitting

the terms in (3.21) according to the partitioning

x(i) =

x(i)
1

x
(i)
2

 , x
(i)
1 ∈ Rn, x

(i)
2 ∈ Rm, (5.17)
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of the approximation x(i) to the solution of the augmented system (5.4).

As has been discussed above, the matrix (block) T1 in (5.16) is assumed to

be SPD. If σn 6= 0 and m > n, then T2 must satisfy (5.15), and the initial guess

x(0) has to be chosen from the range of the augmented matrix C, i.e.,x(0)
1

x
(0)
2

 , x
(0)
1 ∈ Rn, x

(0)
2 ∈ R{A} .

The latter assumptions on T2 and x(0) guarantee that iteration (5.16) is per-

formed on the range of C. If m = n, or σn = 0 and m > n, then T2 is taken to

be SPD, x(0) ∈ Rm+n.

Thus, in the described setting, base idealized scheme (5.16) delivers a non-

trivial solution of system (5.9), provided that the initial guess has a nonzero

component from the null space of the augmented matrix C − σnI. In the next

section, we use idealized method (5.16) as a starting point for deriving a practical

algorithm for computing the smallest singular triplet.

5.2 The Preconditioned Locally Minimal Residual method for

computing the smallest singular triplet

In this section, we introduce an iterative method, that we call the Precon-

ditioned Locally Minimal Residual method for computing the smallest singular

triplet, or PLMR-SVD. The method is based on two four-term recurrent rela-

tions for approximating the right and left singular vectors, respectively. Thus,

at each step, the proposed scheme extracts singular vector approximations from

two separate four-dimensional subspaces. The underlying extraction procedure

is similar to the refined procedure for the augmented matrix, performed in the

preconditioner-based norm.
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Importantly, the PLMR-SVD algorithm can use two preconditioners to ac-

celerate the convergence rate and improve the robustness. One of the precon-

ditioner is required to be SPD, while the other needs to be either SPD, or, for

rectangular matrices of the full rank, SPD at least on a certain subspace.

5.2.1 PLMR-SVD: The choice of trial subspaces

In the previous section, assuming that the targeted singular value σn is

already known, we have described the base idealized method for computing

the smallest singular triplet. The resulting scheme is given in (5.16). The latter

corresponds to method (3.21), (3.24), applied to solve homogeneous system (5.9),

with the involved terms decoupled into the “top” and “bottom” parts.

According to the discussion in Section 5.1, the parts x
(i)
1 and x

(i)
2 of the

augmented iterates x(i) in (5.17), deliver, after suitable normalizations, the ap-

proximations of singular vectors vn and un, respectively. We observe that at

each step of base idealized method (5.16) the improved approximations x
(i+1)
1

and x
(i+1)
2 are chosen as elements of the following four-dimensional subspaces,

span
{
x

(i)
1 , w

(i)
1 , T1

(
A∗w

(i)
2 − σnw

(i)
1

)
, x

(i−1)
1

}
, w

(i)
1 = T1

(
A∗x

(i)
2 − σnx

(i)
1

)
, and

span
{
x

(i)
2 , w

(i)
2 , T2

(
Aw

(i)
1 − σnw

(i)
2

)
, x

(i−1)
2

}
, w

(i)
2 = T2

(
Ax

(i)
1 − σnx

(i)
2

)
,

(5.18)

respectively, where x
(−1)
1 = 0, x

(−1)
2 = 0, x

(0)
1 ∈ Rn, and σn is the known smallest

singular value. In this context, where we distinguish between the subspaces,

which provide the new singular vector approximations, blocks T1 and T2 of the

(augmented) preconditioner T in (5.14) can be viewed as two separate precon-

ditioners. Thus, as discussed, the first preconditioner T1 is chosen to be SPD. If

σn 6= 0 and m > n, then the second preconditioner T2 must satisfy (5.15), i.e.,
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be SPD at least on R{A}, moreover, the initial guess x
(0)
2 also needs to be from

R{A}. Otherwise, if m = n, or σn = 0 and m > n, the preconditioner T2 is

SPD and x
(0)
2 ∈ Rm.

Our goal is to construct a method for computing the smallest singular triplet,

that mimics the behavior of the base idealized scheme, and extracts approximate

singular vectors from two separate low-dimensional trial subspaces. Ideally, at

step (i+ 1), we would like the subspaces for extracting the new approximations

v(i+1) and u(i+1) to the right and left singular vectors vn and un, respectively,

to be of the same form as (5.18), with x
(i)
1 = v(i) and x

(i)
2 = u(i). In practice,

however, since σn is not known exactly, subspaces (5.18), generally, cannot be

computed. Instead, we replace σn by its (asymptotically quadratic) approxima-

tion, i.e., the (singular value) Rayleigh quotient

σ(i) =
(u(i), Av(i))

‖u(i)‖‖v(i)‖
. (5.19)

Given current and previous (unit) singular vector approximations v(i), u(i), and

v(i−1), u(i−1), SPD preconditioners T1 and T2 (the latter possibly needs to satisfy

assumptions (5.15)), at step (i + 1), we consider the following subspaces for

extracting the new approximate singular vectors v(i+1) and u(i+1),

span
{
v(i), w

(i)
1 , T1

(
A∗w

(i)
2 − σ(i)w

(i)
1

)
, v(i−1)

}
, w

(i)
1 = T1

(
A∗u(i) − σ(i)v(i)

)
,

span
{
u(i), w

(i)
2 , T2

(
Aw

(i)
1 − σ(i)w

(i)
2

)
, u(i−1)

}
, w

(i)
2 = T2

(
Av(i) − σ(i)u(i)

)
,

(5.20)

respectively, where v(−1) = 0, u(−1) = 0, and, if σn 6= 0 and m > n, u(0) ∈ R{A}.

We note that vectors w
(i)
1 and w

(i)
2 are the preconditioned residuals of the singular

value problem (5.1), and are, in fact, the partial gradients of the singular value

Rayleigh quotient in (5.19), evaluated at point (v(i), u(i)).
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Subspaces (5.20) suggest the preconditioned iteration, e.g., of the form

v(i+1) = α
(i)
1 v

(i) + β
(i)
1 w

(i)
1 + γ

(i)
1 T1

(
A∗w

(i)
2 − σ(i)w

(i)
1

)
+ δ

(i)
1 p

(i)
1 ,

u(i+1) = α
(i)
2 u

(i) + β
(i)
2 w

(i)
2 + γ

(i)
2 T2

(
Aw

(i)
1 − σ(i)w

(i)
2

)
+ δ

(i)
2 p

(i)
2 ,

p
(i)
1 = v(i) − α(i−1)

1 v(i−1), p
(i)
2 = u(i) − α(i−1)

2 u(i−1), p
(0)
1 = 0, p

(0)
2 = 0,

w
(i)
1 = T1

(
A∗u(i) − σ(i)v(i)

)
, w

(i)
2 = T2

(
Av(i) − σ(i)u(i)

)
, i = 0, 1, . . . ;

(5.21)

where α
(i)
l , β

(i)
l , γ

(i)
l , and δ

(i)
l , l = 1, 2, are some iteration parameters. The

preconditioner T1 in scheme (5.21) is SPD, v(0) ∈ Rn. According to the discus-

sion in the previous section, in order to properly set up iteration (5.21), one

must have a certain information about the specificity of the problem (5.1) under

consideration. In particular, if σn 6= 0 and m > n, i.e., A is of full-rank and

rectangular, the preconditioner T2 in (5.21) needs to satisfy assumptions (5.15),

with the initial guess for the right singular vector u(0) ∈ R{A}. Otherwise,

i.e., for square or rectangular rank-deficient matrices, T2 needs to be SPD with

u(0) ∈ Rm. The choice of vectors p
(i)
1 and p

(i)
2 as weighted differences of the

two consecutive singular vector approximations has been motivated by imple-

mentational considerations, mainly, to obtain a more stable calculation of trial

subspaces, as has been pointed out in Subsection 4.2.2 of the previous chapter,

where similar, implicitly computed, vectors have been introduced for finding

interior eigenpairs.

Finally, let us note that, that at step (i+1), scheme (5.21) searches the new

approximate singular vectors in trial subspaces V(i+1) and U (i+1), such that

V(i+1) = span
{
v(i), w

(i)
1 , T1

(
A∗w

(i)
2 − σ(i)w

(i)
1

)
, v(i) − αi−1

1 v(i−1)
}
,

U (i+1) = span
{
u(i), w

(i)
2 , T2

(
Aw

(i)
1 − σ(i)w

(i)
2

)
, u(i) − α(i−1)

2 u(i−1)
}
,

(5.22)

which are the same (in the exact arithmetic) as (5.20), v(−1) = 0, u(−1) = 0.
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We next describe the extraction procedure, i.e., the choice of the iteration

parameters α
(i)
l , β

(i)
l , γ

(i)
l , and δ

(i)
l , l = 1, 2 in (5.21).

5.2.2 PLMR-SVD: The choice of iteration parameters

Given two k-dimensional subspaces V ⊆ Rn and U ⊆ Rm, we want to

extract unit approximations v ∈ V and u ∈ U to the right and left singular

vectors corresponding to the smallest singular value σn, respectively.

Let us consider the subspace

I =


z1

z2

 : z1 ∈ V , z2 ∈ U

 ⊆ Rm+n, (5.23)

generated by vectors from V and U . Thus, our goal is to extract a vector

v

u


from I in (5.23), such that ‖v‖ = ‖u‖ = 1, with v and u approximating the

right and left singular vectors, respectively.

Now let us assume that σ̃ ≥ 0 is some approximation to the smallest singular

value σn, i.e., σ̃ ≈ σn, and consider the following vector r ∈ Rm+n,

r =

A∗z2 − σ̃z1

Az1 − σ̃z2

 , σ̃ ≥ 0, (5.24)

where z1 ∈ V and z2 ∈ U . We note that if σ̃ = (z2, Az1), where ‖z1‖ = ‖z2‖ = 1,

i.e., σ̃ is a (singular value) Rayleigh quotient (5.19) with v(i) and u(i) replaced by

z1 and z2, respectively, then the vector r in (5.24) represents the residual vector

of singular value problem (5.1), evaluated at z1 and z2. A norm of this vector is

a reasonable quantity that can be used to assess the quality of approximations

z1 and z2 to right and left singular vectors, respectively.
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If σ̃ = σn, the vector r in (5.24) turns into the corresponding residual vector

of homogeneous system (5.9), which has been used as a starting point to derive

base idealized method (5.16), i.e., scheme (3.21), (3.24), applied to solve (5.9). In

order to mimic optimality principle (3.24) underlying the base idealized method,

which minimizes the residual in a preconditioner-based norm, we suggest to

extract approximations v ∈ V and u ∈ U to the right and left singular vectors

vn and un, respectively, which satisfy the following condition,v

u

 = argmin

z = (z∗1 z
∗
2)∗ ∈ I,

‖z1‖ = ‖z2‖ = 1

‖r‖T , r =

A∗z2 − σ̃z1

Az1 − σ̃z2

 , σ̃ ≥ 0 (5.25)

where T is taken to be of block-diagonal form (5.14), the subspace I is defined

in (5.23). According to the discussion in the previous sections, in the case where

σn 6= 0 and m > n, we additionally assume that the subspace U ⊆ R{A}.

This implies that the corresponding subspace I in (5.23) is in the range of

the augmented matrix C, i.e., in the subspace R{C} in (5.10). The latter

guarantees that the vector r from (5.24), whose norm is minimized in (5.25),

is also an element of R{C}, since A∗z2 − σ̃z1 ∈ Rn and Az1 − σ̃z2 ∈ R{A},

provided that z1 ∈ V and z2 ∈ U ⊆ R{A}. The choice of T1 to be SPD and

T2 to satisfy (5.15), leads to the operator T in (5.14), such that (5.11) holds,

i.e., T is SPD on R{C}, which is the invariant subspace of T . This means that

on R{C}, T generates a norm that can indeed be used for the minimization

in (5.25). If m = n, or σn = 0 and m > n, the discussion simplifies, since,

according to the previous section, both T1 and T2 are chosen to be SPD, hence,

the operator T in (5.14) is SPD on Rm+n, and generates a norm in (5.25).
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Let matrices V ∈ Rn×k and U ∈ Cm×k be such that col(V ) = V and

col(U) = U . Then vectors z1 ∈ V and z2 ∈ U can be represented as z1 = V y1

and z2 = Uy2, where y1, y2 ∈ Rk. This allows us to write the vector r in (5.24)

in the following form,

r =

A∗z2 − σ̃z1

Az1 − σ̃z2

 =

−σ̃In A∗

A −σ̃Im


z1

z2


=

−σ̃In A∗

A −σ̃Im


V 0

0 U


y1

y2

 =

−σ̃V A∗U

AV −σ̃U


y1

y2

 .

Thus, by (5.14), we get

‖r‖2
T = (r, T r)

= (

−σ̃V A∗U

AV −σ̃U


y1

y2

 ,

T1 0

0 T2


−σ̃V A∗U

AV −σ̃U


y1

y2

)

= (

y1

y2


︸ ︷︷ ︸

y

,

−σ̃V ∗ V ∗A∗
U∗A −σ̃U∗


T1 0

0 T2


−σ̃V A∗U

AV −σ̃U


︸ ︷︷ ︸

D

y1

y2


︸ ︷︷ ︸

y

).

(5.26)

The obtained expression for the (squared) norm of the vector r allows us

to substitute minimization problem (5.25) by finding vectors y1,min, y2,min ∈ Rk,

such that y1,min

y2,min

 = argmin

y = (y∗1 y
∗
2)∗ ∈ R2k,

y1 ∈ Rk, y2 ∈ Rk,

‖V y1‖ = ‖Uy2‖ = 1

(y,Dy), (5.27)
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where D ∈ R2k×2k, after multiplying the matrices in (5.26), is given by

D =

 V ∗A∗T2AV + σ̃2V ∗T1V −σ̃V ∗T1A
∗U − σ̃V ∗A∗T2U

−σ̃U∗AT1V − σ̃U∗T2AV U∗AT1A
∗U∗ + σ̃2U∗T2U

 . (5.28)

Thus, the solution of the quadratically constrained quadratic optimization prob-

lem (5.27)–(5.28) determines the corresponding minimizer in (5.25), i.e., vectors

v ∈ V and u ∈ U , by

v = V y1,min, and u = Uy2,min, ‖v‖ = ‖u‖ = 1, (5.29)

which deliver the new singular vector approximations.

As has been discussed in the previous section, at a general step (i+ 1), ac-

cording to (5.21) and (5.22), we choose the two trial subspaces for approximating

the right and left singular vectors as spans of four vectors, i.e., V = V(i+1) and

U = U (i+1), respectively, k = 4. The choice of the trial subspaces generates

the corresponding subspace I in (5.23) with V = V(i+1) and U = U (i+1). The

new approximate singular vectors v = v(i+1) and u = u(i+1), satisfying condi-

tion (5.25) for a (presumably) given σ̃ = σ̃(i), are determined by (5.29) after

finding the solutions y1,min, y2,min of optimization problem (5.27)–(5.28) with

8 unknowns. The matrices V and U have vectors from V(i+1) and U (i+1) in

(5.22) as their columns, respectively. The iteration parameters α
(i)
l , β

(i)
l , γ

(i)
l ,

and δ
(i)
l in (5.21) are determined by the components of the corresponding vec-

tors yl,min, l = 1, 2. At the initial step (i = 0), the trial subspaces (5.22) are

spanned by three vectors, i.e., k = 3, and, hence, the extraction of the singular

vector approximations reduces to the solution of problem (5.27)–(5.28) with 6

unknowns. We next consider the choice of the singular value approximations

σ̃ = σ̃(i) in (5.25).

130



Let us first note that in a vicinity of the solution of problem (5.1), i.e., if

v(i) and u(i) are already close to the targeted singular vectors vn and un, a good

choice of the parameter σ̃ = σ̃(i) in (5.25) can be obtained by setting σ̃(i) to the

value of the Rayleigh quotient (5.19), i.e.,

σ̃(i) = σ(i).

In the general case, we suggest to obtain the smallest singular value esti-

mates σ̃ = σ̃(i) by performing two separate Rayleigh-Ritz procedures, one for

problem (5.2), and the other for problem

AA∗u = σ2u, (5.30)

on the already available trial subspaces V(i+1) and U (i+1), defined in (5.22),

respectively. Then, assuming that ṽ(i) and ũ(i) are the (unit) Ritz vectors, cor-

responding to the smallest Ritz values of (5.2) and (5.30) on V(i+1) and U (i+1),

respectively, we set σ̃ = σ̃(i) to the absolute value of the Rayleigh quotient (5.19),

evaluated at ṽ(i) and ũ(i), i.e.,

σ̃(i) =
∣∣(ũ(i), Aṽ(i))

∣∣ , ‖ṽ(i)‖ = ‖ũ(i)‖ = 1, (5.31)

and discard the corresponding Ritz values. We note that, as discussed, in the

case where σn 6= 0 and m > n, at each step, the trial subspace U (i+1) for approx-

imating the left singular vector is in the range of A, i.e., U (i+1) ⊆ R{A}, which

is orthogonal to the null space of A∗, and to the null space of AA∗. The Ritz

vector, given by the Rayleigh-Ritz procedure for (5.30) on U (i+1), delivers an

approximation to the eigenvector corresponding to the smallest nonzero eigen-

value of AA∗, and can indeed be used for estimating the smallest singular value

σn 6= 0 by (5.31). The described approach results in the following algorithm.
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Algorithm 5.2 (The PLMR-SVD algorithm)

Input: starting vectors v(0) and u(0), functions to compute Av, A∗u, T1v, T2v

If m 6= n and A is of full rank, then u(0) ∈ R{A} and T2 satisfies (5.15)

Output: approximation to the smallest singular triplet (σn, vn, un)

1. Start: Normalize v(0), u(0) and set p
(0)
1 = 0, p

(0)
2 = 0

2. Iterate: For i = 0, 1, . . . , Until Convergence Do:

3. σ(i) :=
(
u(i), Av(i)

)
, r1 := A∗u(i) − σ(i)v(i), r2 := Av(i) − σ(i)u(i)

4. w
(i)
1 := T1r1, w

(i)
2 := T2r2,

s
(i)
1 := T1(A∗w

(i)
2 − σ(i)w

(i)
1 ), s

(i)
2 := T2(Aw

(i)
1 − σ(i)w

(i)
2 )

5. Use the Rayleigh-Ritz method for (5.2) and (5.30) on the trial subspaces

span
{
v(i), w

(i)
1 , s

(i)
1 , p

(i)
1

}
and span

{
u(i), w

(i)
2 , s

(i)
2 , p

(i)
2

}
, respectively

6. σ̃ := |(ũ, Aṽ)| (ṽ and ũ are the Ritz vectors corresponding to the smallest

Ritz values in 5)

7. If i > 0, then V :=
[
v(i);w

(i)
1 ; s

(i)
1 ; p

(i)
1

]
, U :=

[
u(i);w

(i)
2 ; s

(i)
2 ; p

(i)
2

]
;

else V :=
[
v(i);w

(i)
1 ; s

(i)
1

]
, U :=

[
u(i);w

(i)
2 ; s

(i)
2

]
8. Solve (5.27). Set (α

(i)
1 β

(i)
1 γ

(i)
1 δ

(i)
1 ) := y∗1,min, (α

(i)
2 β

(i)
2 γ

(i)
2 δ

(i)
2 ) := y∗2,min

9. v(i+1) := α
(i)
1 v

(i) + β
(i)
1 w

(i)
1 + γ

(i)
1 s

(i)
1 + δ

(i)
1 p

(i)
1

u(i+1) := α
(i)
2 u

(i) + β
(i)
2 w

(i)
2 + γ

(i)
2 s

(i)
2 + δ

(i)
2 p

(i)
2

10. p
(i+1)
1 := β

(i)
1 w

(i)
1 + γ

(i)
1 s

(i)
1 + δ

(i)
1 p

(i)
1

p
(i+1)
2 := β

(i)
2 w

(i)
2 + γ

(i)
2 s

(i)
2 + δ

(i)
2 p

(i)
2 EndDo

132



We finally note that similar to the PLMR algorithm for eigenvalue computa-

tions, introduced in the previous chapter, the PLMR-SVD method may require

orthogonalization on the trial subspaces as the approximations v(i) and u(i) get

closer to the targeted singular vectors. Also, as has been previously suggested,

if the triplet (σ(i), v(i), u(i)) is near the exact solution (σn, vn, un), then one can

skip step 5 of Algorithm 5.2, and set σ̃ to the current value of the (singular

value) Rayleigh quotient σ(i) at step 6.

In the next section we apply the PLMR-SVD method to compute the small-

est singular triplet of a two-dimensional discrete gradient operator.

5.3 Numerical example

In this concluding section we use the PLMR-SVD method, given by Al-

gorithm 5.2, to compute the smallest singular triplet of the gradient operator,

discretized on a unit square, assuming Dirichlet boundary conditions. The dis-

cretization is performed using finite differences, in such a way that the matrix

of the normal equations of the resulting operator G, i.e., L = G∗G, is exactly

the discrete negative Laplacian, considered in the model problems of Chap-

ters 3 and 4. It is clear that the number of rows of the matrix G is approx-

imately twice the number of its columns. The transpose of G represents the

corresponding discrete divergence operator.

Let us note that, in fact, computing the singular triplets of the gradient G

can possibly be a reasonable alternative to finding the respective eigenpairs of

the negative Laplacian L = G∗G, in the case where both the eigenmodes of the

latter and their gradients are desired. In particular, as has been pointed out at

the beginning of this chapter, once an approximate eigenvector of the matrix
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L = G∗G, corresponding to the smallest eigenvalue is found, the computation

of its gradient, i.e., in the operator terms, the multiplication by G, may deliver

highly inaccurate results. This complication may be avoided, e.g., by replacing

the eigenvalue problem by the corresponding singular value problem.

As has been shown in the previous sections, the PLMR-SVD algorithm can

simultaneously use two preconditioners T1 and T2. For problem (5.1), with A

chosen to be the discrete gradient G, the preconditioner T1 is such that

T1 ≈ (G∗G)−
1
2 = (L)−

1
2 , (5.32)

where L is the discrete negative Laplacian, (G∗G)
1
2 is the polar factor of G.

We further call preconditioners T1, which are constructed according to the idea

of approximation of the inverted polar factor, the polar factor preconditioners.

The preconditioner T2 needs to approximate, e.g.,

T2 ≈ (GG∗ + αI)−
1
2 ,

where α is a small real parameter. Moreover, since G is rectangular and of full

rank, T2 needs to satisfy (5.15).

In our experiment we show that even the introduction of only one precon-

ditioner, i.e., the polar factor preconditioner T1 in (5.32), can give significantly

improved results, compared, e.g., to the unpreconditioned idealized methods for

computing the smallest singular triplet, discussed in Section 5.1.

In order to construct the preconditioner T1 in (5.32), we apply the MG

technique similar to Algorithm 3.9, which has been used as the absolute value

preconditioner for the discrete Helmholtz equation. In particular, we suggest to

perform the smoothing steps using the negative Laplace operator, i.e., the matrix
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L = G∗G of the normal equations, and invert the polar factor (L)
1
2 = (G∗G)

1
2 of

the gradient G on the coarse grid. For consistency, we state the corresponding

two-grid scheme and its multilevel extension.

In the two-grid context, we use the subscript H to refer to the coarse-grid

quantities. For example, GH and LH denote the gradient and the negative

Laplace operator, discretized on the coarse grid of mesh size H, respectively.

No subscript is used for denoting the fine-grid components.

Algorithm 5.3 (Two-grid polar factor preconditioner T1)

Input r, output w.

1. Pre-smoothing. Apply ν pre-smoothing steps (for the problem Lw = r)

with the zero initial guess (w(0) = 0):

w(i+1) = w(i) +M−1(r − Lw(i)), i = 0, . . . , ν − 1,

where the (nonsingular) matrix M defines the choice of a smoother. This

step results in the pre-smoothed vector wpre = w(ν), ν ≥ 1.

2. Coarse grid correction. Restrict the vector r − Lwpre to the coarse grid,

multiply it by the inverted coarse-level polar factor (G∗HGH)
1
2 = (LH)

1
2 of

the gradient, and then prolongate the result back to the fine grid. This

delivers the coarse-grid correction, which is added to wpre to obtain the

corrected vector wcgc:

wH = (G∗HGH)−
1
2 R (r − Lwpre) , (5.33)

wcgc =wpre + PwH , (5.34)

where P and R are prolongation and restriction operators, respectively.
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3. Post-smoothing. Apply ν post-smoothing steps (for the problem Lw = r)

with the initial guess w(0) = wcgc:

w(i+1) = w(i) +M−∗(r − Lw(i)), i = 0, . . . , ν − 1.

This step results in the post-smoothed vector wpost = w(ν). Return the

vector w = wpost.

The two-grid preconditioner T1 = T1,tg, constructed by Algorithm 5.3, has

the following structure,

T1,tg =
(
I −M−∗L

)ν
P (G∗HGH)−

1
2 R
(
I − LM−1

)ν
+ S, (5.35)

with S = L−1 − (I −M−∗L)
ν
L−1 (I − LM−1)

ν
. The symmetry and positive

definiteness are justified in the same way as for the absolute value preconditioner

in (3.39), constructed according to Algorithm 3.8; see Subsection 3.2.2.1.

Now let us assume that a hierarchy of m + 1 grids is available, and the

grids are numbered by l = m,m − 1, . . . , 0 with the corresponding mesh sizes

{hl} in the decreasing order. To extend the two-grid polar factor preconditioner

given by Algorithm 5.3 to the multigrid, we replace the inversion of the polar

factor (G∗HGH)
1
2 in step 2 (formula (5.33)), by the recursive application of the

algorithm to the restricted vector R(r−Lwpre). This approach is then followed

on all levels, with the exact inversion of the polar factor of the discrete gradient

operator on the coarsest grid.

If started from the finest grid l = m, the following scheme gives the multilevel

extension of the two-grid polar factor preconditioner defined by Algorithm 5.3.

We note that the subscript l is introduced to match the occurring quantities to

the corresponding grid.
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Algorithm 5.4 (PFP-MG(rl): MG polar factor preconditioner T1)

Input rl, output wl.

1. Pre-smoothing. Apply ν pre-smoothing steps (for the problem Llwl = rl)

with the zero initial guess (w
(0)
l = 0):

w
(i+1)
l = w

(i)
l +M−1

l (rl − Llw(i)
l ), i = 0, . . . , ν − 1,

where the (nonsingular) matrix Ml defines the choice of a smoother on

level l. This step results in the pre-smoothed vector wprel = w
(ν)
l , ν ≥ 1.

2. Coarse grid correction. Restrict the vector rl − Llwprel to the grid l − 1.

If l = 1, then multiply the restricted vector by the inverted coarse-level

polar factor (G∗0G0)
1
2 ,

w0 = (G∗0G0)−
1
2 R0 (r1 − L1w

pre
1 ) , if l = 1. (5.36)

Otherwise, recursively apply PFP-MG to approximate the action of the

inverted polar factor
(
G∗l−1Gl−1

) 1
2 on the restricted vector,

wl−1 = PFP-MG (Rl−1 (rl − Llwprel )) , if l > 1. (5.37)

Prolongate the result back to the fine grid. This delivers the coarse-grid

correction, which is added to wprel to obtain the corrected vector wcgcl :

wcgcl = wprel + Plwl−1, (5.38)

where wl−1 is given by (5.36)–(5.37). The operators Rl−1 and Pl define

the restriction from the level l to l− 1 and the prolongation from the level

l − 1 to l, respectively.
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3. Post-smoothing. Apply ν post-smoothing steps (for the problem Llwl = rl)

with the initial guess w
(0)
l = wcgcl :

w
(i+1)
l = w

(i)
l +M−∗

l (rl − Llw(i)
l ), i = 0, . . . , ν − 1.

This step results in the post-smoothed vector wpostl = w
(ν)
l . Return the

vector wl = wpostl .

Similar to Algorithm 3.9 in Subsection 3.2.2.1, the multigrid polar factor

preconditioner T1 = T1,mg, constructed according to Algorithm 5.4, has the

following structure,

T1,mg =
(
I −M−∗L

)ν
PT

(m−1)
1,mg R

(
I − LM−1

)ν
+ S, (5.39)

with S as in (5.35) and T
(m−1)
1,mg defined according to the recursion below,

T
(l)
1,mg =

(
Il −M−∗

l Ll
)ν
PlT

(l−1)
1,mg Rl−1

(
Il − LlM−1

l

)ν
+ Sl, l = 1, . . . ,m− 1,

T
(0)
1,mg = (G∗0G0)−

1
2 , (5.40)

where Sl = L−1
l −

(
Il −M−∗

l Ll
)ν
L−1
l

(
Il − LlM−1

l

)ν
. In (5.39) we skip the sub-

script in the notation for the quantities associated with the finest level l = m.

The symmetry and positive definiteness of T1 = T1,mg, defined by (5.39)–(5.40),

are justified in the same way as for the absolute value preconditioner in (3.45)–

(3.46), constructed according to Algorithm 3.9; see Subsection 3.2.2.1.

In Figure 5.1 (left) we show the improved convergence behavior of the

PLMR-SVD method with the preconditioner T1, constructed according to the

multilevel Algorithm 5.4, compared to the unpreconditioned idealized singular

value solver, based on the (globally optimal) MINRES algorithm, applied to
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Figure 5.1: Comparison of the PLMR-SVD method with one MG precondi-
tioner versus the idealized singular value solvers, applied to find the smallest sin-
gular triplet of the m-by-n discrete gradient operator, n = (27−1)2 ≈ 1.6×104,
m ≈ 2n.

system (5.9), where the exact smallest singular value is known. As discussed in

Section 4.3 of the previous chapter, such idealized solver is obtained by modify-

ing the matlab funcion “minres.m”, and is referred to as “MINRESNULL”. We

discretize the gradient G on the grid of the mesh size h = 2−7, initial singular

vector approximations are randomly chosen, with the initial left singular vector

in the range of G. The MG components for the preconditioner are defined simi-

larly to Subsection 3.2.2.2, with one step of the 4/5-damped Jacobi iteration as

a (pre- and post-) smoother, standard coarsening scheme with the coarsest grid

of the mesh size 2−4, full weighting for the restriction, and piecewise multilinear

interpolation for the prolongation.

In Figure 5.1 (right) we compare the PLMR-SVD algorithm with the pre-

conditioned “control” methods introduced in Section 4.3, i.e., (preconditioned)

“MINRESNULL” and “LO-BASE”, which is the base idealized scheme (3.21),

(3.24), applied to (5.9), with the known smallest singular value. As a precondi-
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tioner for both methods we use an operator of the formT1 0

0 Im

 ,
where the action of T1 is constructed according to Algorithm 5.4. The test

setting, including the definition of the MG components for constructing T1, is

the same as described in the previous paragraph. Figure 5.1 (right) demonstrates

that the convergence rate of PLMR-SVD, at least at a significant number of the

initial steps, is similar to that of the idealized methods.

We note that both figures compare the norms of the residual vectors for

singular problem (5.1), with A replaced by G, produced by the PLMR-SVD

algorithm, i.e., √
‖G∗ui − σ(i)v(i)‖2 + ‖Gvi − σ(i)u(i)‖2,

versus residual norms
‖(C − σnI)x(i)‖

‖x(i)‖
, given by “MINRESNULL” and “LO-

BASE”, evaluated at the (augmented) normalized iterates
x(i)

‖x(i)‖
; C − σnI is

the shifted augmented matrix in (5.9). We finally remark that, according to

the discussion in Section 4.3, in order to meaningfully match the numbering of

iterations of the three considered methods, we plot the values of the “MINRES-

NULL” residual norms, which are measured after every other step. In other

words, the “MINRESNUL” residual norm at step i, in Figure 5.1, corresponds

to the norm of the MINRES (or, PMINRES) algorithm, applied to (5.9), at step

j = 2i, evaluated at the normalized iterate. Small quadratically constrained

quadratic problems (5.27)–(5.28), at each step of the PLMR-SVD algorithm,

are solved using the “fmincon” function from the matlab optimization toolbox,
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set up to use the interior point method with the exactly provided gradients and

Hessians, with the tolerance level for the approximate solution equal to 10−6,

and random initial guess.

5.4 Conclusions

In this concluding chapter we have described a new technique, called the

PLMR-SVD method, for computing the singular triplet corresponding to the

smallest singular value of a general rectangular matrix. The method represents

an iterative scheme, which is based on two linked four-term recurrent relations

for approximating the right and left singular vectors, respectively. The itera-

tion parameters at each step are determined as solutions of small quadratically

constrained quadratic optimization problems. The method uses two SPD pre-

conditioners. In particular, one of the preconditioners can be chosen to approx-

imate an inverse of the symmetric positive (semi-) definite factor in the polar

decomposition of the problem matrix. At the initial phase, the PLMR-SVD al-

gorithm requires information about the dimensions of the input matrix (square

or rectangular) and, possibly, about its rank (full rank or rank deficient).

In order to assess the performance of the PLMR-SVD algorithm, we have

applied it to the model problem of finding the singular triplet corresponding to

the smallest singular value of the two-dimensional discrete gradient operator. In

our tests we have used only one of the two SPD preconditioners allowed by the

method. This preconditioner has been constructed to approximate the inverse of

the SPD polar factor of the discrete gradient using the (geometric) MG approach.

In particular, we have shown that the use of only one preconditioner provides a

significant improvement in the convergence rate as compared to unpreconditioned
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idealized optimal singular value solvers. The construction of an example of the

second preconditioner, in order to further accelerate the convergence, is one of

the current goals of the related research. Other goals include the extension of the

present version of the PLMR-SVD algorithm to the block (subspace) iteration,

the theoretical study of the method, as well as the development and application

of the relevant software.
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and convergence of GMRES. BIT, 38(4):636–643, 1998.

[3] O. Axelsson. Iterative solution methods. Cambridge University Press, New
York, NY, 1994.

[4] Z. Bai, J. Demmel, J. Dongarra, A. Ruhe, and H. van der Vorst, editors.
Templates for the solution of algebraic eigenvalue problems. Society for
Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2000.

[5] A. H. Baker, E. R. Jessup, and Tz. V. Kolev. A simple strategy for vary-
ing the restart parameter in GMRES(m). Journal of Computational and
Applied Mathematics, 230(2):751–761, 2009.

[6] A. H. Baker, E. R. Jessup, and T. Manteuffel. A Technique for Accelerating
the Convergence of Restarted GMRES. SIAM Journal on Matrix Analysis
and Applications, 26(4):962–984, 2005.

[7] A. Bayliss, C. I. Goldstein, and E. Turkel. An iterative method for the
Helmholtz equation. Journal of Computational Physics, 49(3):443–457,
1983.

[8] B. Beckermann, S. A. Goreinov, and E. E. Tyrtyshnikov. Some remarks on
the Elman estimate for GMRES. SIAM Journal on Matrix Analysis and
Applications, 27(3):772–778, 2005.

[9] B. Beckermann and A. B. J. Kuijlaars. Superlinear convergence of conju-
gate gradients. SIAM Journal on Numerical Analysis, 39(1):300–329, 2001.

[10] M. Benzi, G. H. Golub, and J. Liesen. Numerical solution of saddle point
problems. Acta Numerica, 14:1–137, 2005.

143



[11] M. W. Berry, D. Mezher, B. Philippe, and A. Sameh. Parallel Algorithms
for the Singular Value Decomposition, in: Handbook for Parallel Comput-
ing and Statistics, edited by Erricos John Kontoghiorghes, pages 117–164.
Chapman & Hall/CRC, 2006.
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[35] A. Greenbaum and Z. Strakoš. Matrices that generate the same Krylov
residual spaces. In G. Golub, A. Greenbaum, and M. Luskin, editors, Recent
Advances in Iterative Methods, pages 95–118. Springer, 1994.

[36] A. Greenbaum and L. N. Trefethen. GMRES/CR and Arnoldi/Lanczos as
matrix approximation problems. SIAM Journal on Scientific Computing,
15(2):359–368, 1994.

[37] V. Hernández, J. E. Román, and A. Tomás. A Robust and Efficient Par-
allel SVD Solver Bsed on Restarted Lanczos Bidiagonalization. Electronic
Transactions on Numerical Analysis, 31:68–85, 2008.

[38] U. Hetmaniuk and R. Lehoucq. Basis selection in LOBPCG. Journal of
Computational Physics, 218(1):324–332, 2006.

[39] N. J. Higham. Functions of Matrices: Theory and Computation. Society
for Industrial and Applied Mathematics, Philadelphia, PA, USA, 2008.

[40] M. E. Hochstenbach. A Jacobi–Davidson Type SVD Method. SIAM J.
Sci. Comput., 23(2):606–628, 2001.

[41] M. E. Hochstenbach. Harmonic and Refined Extraction Methods for the
Singular Value Problem, with Applications in Least Squares Problems. BIT
Numerical Mathematics, 44:721–754, 2004.

[42] R. A. Horn and C. R. Johnson. Matrix Analysis. Cambridge University
Press, 1990.

[43] I. C.F. Ipsen. Expressions and bounds for the GMRES residual. BIT,
40(3):524–535, 2000.

[44] Z. Jia. Refined iterative algorithms based on Arnoldi’s process for large
unsymmetric eigenproblems. Linear Algebra and its Applications, 259:1–
23, 1997.

[45] Z. Jia and D. Niu. An Implicitly Restarted Refined Bidiagonalization Lanc-
zos Method for Computing a Partial Singular Value Decomposition. SIAM
Journal on Matrix Analysis and Applications, 25(1):246–265, 2003.

[46] W. Joubert. On the convergence behavior of the restarted GMRES algo-
rithm for solving nonsymmetric linear systems. Numerical Linear Algebra
with Applications, 1:427–447, 1994.

146



[47] A. V. Knyazev. Computation of eigenvalues and eigenvectors for mesh
problems: algorithms and error estimates. Dept. Numerical Math. USSR
Academy of Sciences, Moscow, 1986. (In Russian).

[48] A. V. Knyazev. Toward the Optimal Preconditioned Eigensolver: Locally
Optimal Block Preconditioned Conjugate Gradient Method. SIAM Journal
on Scientific Computing, 23(2):517–541, 2001.

[49] E. Kokiopoulou, C. Bekas, and E. Gallopoulos. Computing smallest sin-
gular triplets with implicitly restarted lanczos bidiagonalization. Applied
Numerical Mathematics, 49(1):39–61, 2004.

[50] A. L. Laird and M. B. Giles. Preconditioned iterative solution of the 2D
Helmholtz equation. Technical Report 02/12, Oxford University Comput-
ing Laboratory, Oxford, UK, 2002.

[51] V. I. Lebedev. Iterative methods for solving operator equations with spec-
trum contained in several intervals. Zhurnal Vychislitel’noi Matematiki i
Matematicheskoi Fiziki, 9(6):17–24, 1969. English transl. in USSR Comput.
Math. Math. Phys. 9 (1972).

[52] N. M. Nachtigal, S. C. Reddy, and L. N. Trefethen. How fast are nonsym-
metric matrix iterations? SIAM Journal on Matrix Analysis and Applica-
tions, 13(3):778–795, 1992.

[53] J. Nocedal and S. Wright. Numerical Optimization. Springer Series in
Operations Research. Springer, 1999.

[54] E.E. Ovtchinnikov. Computing several eigenpairs of Hermitian prob-
lems by conjugate gradient iterations. Journal of Computational Physics,
227(22):9477–9497, 2008.

[55] C. C. Paige and M. A. Saunders. Solution of Sparse Indefinite Systems of
Linear Equations. SIAM Journal on Numerical Analysis, 12(4):617–629,
1975.

[56] B. N. Parlett. The symmetric eigenvalue problem, volume 20 of Classics
in Applied Mathematics. Society for Industrial and Applied Mathematics
(SIAM), Philadelphia, PA, 1998. Corrected reprint of the 1980 original.

[57] B. N. Parlett and O. A. Marques. An implementation of the dqds algo-
rithm (positive case). Linear Algebra and its Applications, 309(1-3):217–
259, 2000.

147



[58] Y. Saad. Iterative Solution of Indefinite Symmetric Linear Systems by
Methods Using Orthogonal Polynomials over Two Disjoint Intervals. SIAM
Journal on Numerical Analysis, 20(4):784–811, 1983.

[59] Y. Saad. Iterative Methods for Sparse Linear Systems. SIAM, 2003.

[60] Y. Saad, J. R. Chelikowsky, and S. M. Shontz. Numerical methods for
electronic structure calculations of materials. SIAM Review, 52(1):3–54,
2010.

[61] Y. Saad and M. H. Schultz. GMRES: A Generalized Minimal Residual
Algorithm for Solving Nonsymmetric Linear Systems. SIAM Journal on
Scientific and Statistical Computing, 7(3):856–869, 1986.

[62] V. Simoncini and D. Szyld. On the occurrence of superlinear convergence
of exact and inexact Krylov subspace methods. SIAM Review, 47:247–272,
2005.

[63] V. Simoncini and D. Szyld. New conditions for non-stagnation of minimal
residual methods. Numerische Mathematik, 109(3):477–487, 2008.

[64] G. L. G. Sleijpen and H. A. Van der Vorst. A Jacobi–Davidson Iteration
Method for Linear Eigenvalue Problems. SIAM Journal on Matrix Analysis
and Applications, 17(2):401–425, 1996.

[65] G. W. Stewart. Collinearity and least squares regression. Statistical Sci-
ence, 2(1):68–84, 1987.

[66] G. W. Stewart and J.-G. Sun. Matrix Perturbation Theory. Academic
Press, 1990.

[67] O. Tatebe. The multigrid preconditioned conjugate gradient method. In
N. D. Melson, T. A. Manteuffel, and S. F. McCormick, editors, Sixth Cop-
per Mountain Conference on Multigrid Methods, volume NASA Conference
Publication 3224, pages 621–634, 1993.

[68] M. P. Teter, M. C. Payne, and D. C. Allan. Solution of Schrödinger’s
equation for large systems. Physical Review B, 40(18):12255–12263, 1989.

[69] A. N. Tikhonov and A. A. Samarskii. Uravneniya matematicheskoi fiziki
(Equations of Mathematical Physics). Nauka, Moscow, 1977. In Russian.

[70] K.-C. Toh. GMRES vs. Ideal GMRES. SIAM Journal on Matrix Analysis
and Applications, 18(1):30–36, 1997.

148



[71] S. Tomov, J. Langou, J. Dongarra, A. Canning, and L.-W. Wang.
Conjugate-gradient eigenvalue solvers in computing electronic properties of
nanostructure architectures. International Journal of Computational Sci-
ence and Engineering, 2(3/4):205–212, 2008.

[72] L. N. Trefethen. Approximation theory and numerical linear algebra. In
J. Mason and M. Cox, editors, Algorithms for Approximation II. Chapman
and Hall, London, U.K., 1990.

[73] U. Trottenberg, C. W. Oosterlee, and A. Schüller. Multigrid. Academic
Press, 2001.

[74] H. A. van der Vorst and C.Vuik. The superlinear convergence behaviour of
GMRES. Journal of Computational and Applied Mathematics, 48:327–341,
1993.

[75] M. B. van Gijzen, Y. A. Erlangga, and C. Vuik. Spectral Analysis of
the Discrete Helmholtz Operator Preconditioned with a Shifted Laplacian.
SIAM Journal on Scientific Computing, 29(5):1942–1958, 2007.

[76] E. Vecharynski and J. Langou. Any admissible cycle-convergence behavior
is possible for restarted GMRES at its initial cycles. Numerical Linear
Algebra with Applications, doi:10.1002/nla.739, 2010.

[77] E. Vecharynski and J. Langou. The Cycle-Convergence of Restarted GM-
RES for Normal Matrices Is Sublinear. SIAM Journal on Scientific Com-
puting, 32(1):186–196, 2010.

[78] D. M. Young and K. C. Jea. Generalized conjugate-gradient acceleration of
nonsymmetrizable iterative methods. Linear Algebra and its Applications,
34:159–194, 1980.

[79] I. Zavorin. Spectral factorization of the Krylov matrix and convergence
of GMRES. Technical report, University of Maryland Computer Science
Department, http://hdl.handle.net/1903/1168, 2002.

[80] I. Zavorin, D. P. O’Leary, and H. Elman. Complete stagnation of GMRES.
Linear Algebra and its Applications, 367:165–183, 2003.

[81] B. Zhong and R. B. Morgan. Complementary cycles of restarted GMRES.
Numerical Linear Algebra with Applications, 15(6):559–571, 2008.
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