COURSE OVERVIEW

I. Course Description
This is a mathematics course that was designed to fulfill the CORE University requirements. The topics in algebra are designed for students who intend to take the calculus sequence. Functions, domains, ranges, graphs, data scatter plots and curve fitting, solving equations and systems of equations, polynomial functions, rational functions, and selected other topics are explored. Graphic calculators and/or computer algebra systems are used extensively. Applications are emphasized. Note: No co-credit with either MATH 1070 or 1130. Semester Hours: 3

II. Course Prerequisites
It must be assumed that every student has a good understanding of the mathematical concepts in an intermediate Algebra course or a good Advanced Algebra course in high school. An assignment will be administered during the first week of the course (skills inventory) to help you gauge your readiness for the rigor of the mathematics content. While this assignment will not determine mandatory placement it should be used as a guide to help you determine whether this class is the right fit for your current mathematical abilities.

III. Course Rationale
This course is designed to help students understand the fundamental concepts of algebra and to show how algebra can be used to model real-world problems. The important ideas of calculus will be foreshadowed and the use of technology will be used to efficiently facilitate the understanding of important algebraic concepts. Students will attain a deeper understanding of how mathematics relates to the world around them and prepare themselves for further study in calculus and mathematics.

IV. Required Texts and Materials
Algebra and Trigonometry Enhanced with Graphing Utilities (6th Edition) by Sullivan and Sullivan. An eBook is available and recommended for purchase since we will be utilizing the associated MyMathLab software.

Option 1 - Textbook (3-Hole Punched) plus MyMathLab Access Code or Option 2 - E-book plus MyMathLab Access Code

To access MyMathLab go to www.coursecompass.com. Under the Register tab click on Student. Next click on the ‘OK! Register Now’ button. You will need your University email address (which you check regularly), the Course ID which is: mardones67338 and either a student access code or a valid credit card. If you purchased the text new at the bookstore it will have a student access code which gives you access to the homework software. If you use a credit card to purchase the software it comes with an eBook which you can use for the class.

V. Course Goals and Learning Objectives
CORE Learning Outcomes

1. **Calculate**: Accurately and logically manipulate a mathematical representation to attain desired information.
2. **Represent**: Able to translate between representations to clearly represent information and gain insight. Representations may be expressed symbolically, graphically, numerically, or verbally.
3. **Interpret**: Draw meaningful inferences and communicate insights from mathematical representations. Mathematical representations may include statistical, graphical, algebraic, geometric, or symbolic.
4. **Model**: Develop and/or apply an appropriate mathematical model for a real-world problem. This can be demonstrated by e.g. developing a model, choosing an appropriate model from several, or explaining the primary assumptions needed to use a particular model.

Course Learning Outcomes MATH 1110

The following section lists the Learning Outcomes specific to the course (MATH 1110). Each Learning Outcome reflects one or more of the CORE Learning Outcomes.

Exam 1: 15% of course grade

Graphs, Equations, and Inequalities – Chapter 1

Students will be able to…
- Solve equations graphically *(Interpret)*
- Solve quadratic equations by factoring, square root method, completing the square, quadratic formula *(Calculate)*
- Solve radical equations and absolute value equations algebraically *(Calculate)*

Graphs – Chapter 2

Students will be able to…
- Find intercepts of linear and quadratic functions algebraically *(Calculate)*
- Find intercepts of linear and quadratic functions graphically *(Interpret)*
- Calculate the slope of a line and write the equation of a line in slope-intercept form *(Calculate)*
- Interpret the slope and intercepts of a line *(Interpret)*
- Graph lines by hand given a point and the slope *(Represent)*
- Graph lines written in general form *(Represent)*
- Find the equation of a line given a point and the slope of the line, or given two points on the line *(Calculate)*
- Find the equation of vertical and horizontal lines *(Calculate)*
- Find the equation of perpendicular and parallel lines *(Calculate)*
- Write the standard form of the equation of a circle by completing the square *(Calculate)*
- Graph circles whose equations are given in standard form *(Represent)*

Functions and Their Graphs – Chapter 3

Students will be able to…
- Determine whether a relation represents a function *(Interpret)*
- Evaluate functions *(Calculate)*
- Evaluate the difference quotient where f is linear or quadratic *(Calculate)*
- Find the domain of $y = f(x)$ where f is a polynomial, rational, or root function *(Interpret)*
- Form the sum, difference, product, and quotient of two functions *(Calculate)*
- Identify the graph of a function using the Vertical Line Test *(Interpret)*
- Determine Even and Odd functions from a graph as well as from an equation *(Interpret)*
- Use the graph of a function to determine where the function is increasing, decreasing, or constant *(Interpret)*
- Use the graph of a function to locate local and absolute maxima and local minima *(Interpret)*
- Use a graphing utility to approximate maxima, minima, and increasing, decreasing intervals *(Interpret)*
- Find the Average Rate of Change of a function *(Calculate)*

Exam 2 – 15% of course grade
Functions and Their Graphs – Chapter 3
Students will be able to…
- Graph the “Library of Functions”: $y = x$, $y = x^2$, $y = x^3$, $y = \sqrt{x}$, $y = \sqrt[3]{x}$, $y = \frac{1}{x}$, $y = |x|$ (Represent)
- Graph piecewise-defined functions by hand and evaluate (Represent)
- Transform the “Library of Functions”: stretch, compress, horizontally and vertically shift, reflect (Represent)
- Use modeling to solve problems involving maximizing area and volume (Represent)

Linear and Quadratic Functions – Chapter 4
Students will be able to…
- Build linear and quadratic models from verbal descriptions (Model)
- Distinguish between linear and non-linear relations (Interpret)
- Graph quadratic functions using transformations (Represent)
- Graph a quadratic function by hand by finding its vertex, axis of symmetry, and intercepts (Represent)
- Find the maximum or minimum value of a quadratic function algebraically (Calculate)
- Use graphing technology to build quadratic and linear regression models from data (Model)

Polynomial and Rational Functions – Chapter 5
Students will be able to…
- Identify polynomial functions and their degree (Interpret)
- Identify the real zeroes of a factored polynomial function and their multiplicity (Interpret)
- Determine end behavior, intercepts turning points, domain range of a polynomial in factored form (Interpret)
- Graph a polynomial function in factored form by hand (Represent)
- Use the rational zeroes theorem to list the potential zeroes of a polynomial function (Calculate)
- Find the rational and complex zeroes of a polynomial function by hand (Calculate)

Exam 3 – 15% of course grade

Polynomial and Rational Functions – Chapter 5
Students will be able to…
- Find the domain of a rational function (Interpret)
- Find the vertical, horizontal, and oblique asymptotes of a rational function (Interpret)
- Analyze the graph of a rational function by finding domain, intercepts, and asymptotes (Interpret)
- Graph a rational function by hand (Represent)

Exponential and Logarithmic Functions – Chapter 6
Students will be able to…
- Form a composite function (Calculate)
- Find the domain of a composite function (Interpret)
- Determine whether a function is one-to-one (Interpret)
- Obtain the graph of the inverse function from the graph of the function (Represent)
- Find the inverse of a function defined by an equation (Calculate)
- Evaluate exponential functions (Calculate)
- Graph exponential functions (Represent)
- Convert from exponential to logarithmic form and vice versa (Represent)
- Evaluate simple logarithmic expressions without a calculator (Calculate)
- Determine the domain of a logarithmic function (Interpret)
- Work with properties of logarithms (Calculate)
- Use the change of base formula to evaluate logarithms (Calculate)
- Solve logarithmic and exponential equations algebraically (Calculate)
- Solve logarithmic and exponential equations graphically (Interpret)
- Build exponential and logarithmic models from data using regression (Model)

VI. Course Schedule
<table>
<thead>
<tr>
<th>Week</th>
<th>Day</th>
<th>Date</th>
<th>Sections</th>
<th>Topic/Reading</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Monday</td>
<td>Martin Luther King Day</td>
<td>No Class</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Wednesday</td>
<td>1/20/16</td>
<td>Syllabus, 1.3</td>
<td>Solving Quadratic Equations</td>
</tr>
<tr>
<td>2</td>
<td>Monday</td>
<td>1/25/16</td>
<td>1.3, 1.5</td>
<td>Solving Quadratic Equations cont., Radical Equations</td>
</tr>
<tr>
<td></td>
<td>Wednesday</td>
<td>1/27/16</td>
<td>1.5, 2.1</td>
<td>Radical Equations, Equations Quadratic in Form,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Intercepts and Symmetry</td>
</tr>
<tr>
<td>3</td>
<td>Monday</td>
<td>2/1/16</td>
<td>2.2, 2.3</td>
<td>Lines, Circles</td>
</tr>
<tr>
<td></td>
<td>Wednesday</td>
<td>2/3/16</td>
<td>2.3 cont., 3.1</td>
<td>Circle (cont.), Functions</td>
</tr>
<tr>
<td>4</td>
<td>Monday</td>
<td>2/8/16</td>
<td>3.2</td>
<td>The graph of a Function</td>
</tr>
<tr>
<td></td>
<td>Wednesday</td>
<td>2/10/16</td>
<td>3.3</td>
<td>Properties of Functions</td>
</tr>
<tr>
<td>5</td>
<td>Monday</td>
<td>2/15/16</td>
<td>Review for Exam</td>
<td>Review for Exam #1/Catch-Up</td>
</tr>
<tr>
<td></td>
<td>Wednesday</td>
<td>2/17/16</td>
<td>Exam #1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Monday</td>
<td>2/22/16</td>
<td>3.4</td>
<td>Library of Functions, Piecewise-Defined Functions</td>
</tr>
<tr>
<td></td>
<td>Wednesday</td>
<td>2/24/16</td>
<td>3.5</td>
<td>Graphing Techniques and Transformations</td>
</tr>
<tr>
<td>7</td>
<td>Monday</td>
<td>2/29/16</td>
<td>3.6, 4.2</td>
<td>Building Mathematical Models, Building Linear Functions from Data</td>
</tr>
<tr>
<td></td>
<td>Wednesday</td>
<td>3/2/16</td>
<td>4.3, 4.4</td>
<td>Quadratic Functions and Their Properties, Building Quadratic Functions from Data</td>
</tr>
<tr>
<td>8</td>
<td>Monday</td>
<td>3/7/16</td>
<td>5.1</td>
<td>Polynomial Functions</td>
</tr>
<tr>
<td></td>
<td>Wednesday</td>
<td>3/9/16</td>
<td>5.2</td>
<td>Real Zeros</td>
</tr>
<tr>
<td>9</td>
<td>Monday</td>
<td>3/14/16</td>
<td>Review for Exam</td>
<td>Review for Exam #2 & Catch-Up</td>
</tr>
<tr>
<td></td>
<td>Wednesday</td>
<td>3/16/16</td>
<td>Exam #2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3/21-3/27</td>
<td>Spring Break</td>
<td>No Class</td>
</tr>
<tr>
<td>10</td>
<td>Monday</td>
<td>3/28/16</td>
<td>5.3</td>
<td>Complex Zeros</td>
</tr>
<tr>
<td></td>
<td>Wednesday</td>
<td>3/30/16</td>
<td>5.4</td>
<td>Properties of Rational Functions</td>
</tr>
<tr>
<td>11</td>
<td>Monday</td>
<td>4/4/16</td>
<td>5.5</td>
<td>The Graph of a Rational Function</td>
</tr>
<tr>
<td></td>
<td>Wednesday</td>
<td>4/6/16</td>
<td>6.1 & 6.2</td>
<td>Composite Functions</td>
</tr>
<tr>
<td>12</td>
<td>Monday</td>
<td>4/11/16</td>
<td>6.3</td>
<td>One-to-One Functions; Inverses</td>
</tr>
<tr>
<td></td>
<td>Wednesday</td>
<td>4/13/16</td>
<td>6.4</td>
<td>Exponential & Logarithmic Functions</td>
</tr>
<tr>
<td>13</td>
<td>Monday</td>
<td>4/18/16</td>
<td>Review for Exam</td>
<td>Review for Exam #3 & Catch-Up</td>
</tr>
<tr>
<td></td>
<td>Wednesday</td>
<td>4/20/16</td>
<td>Exam #3</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Monday</td>
<td>4/25/16</td>
<td>6.5</td>
<td>Properties of Logarithms</td>
</tr>
<tr>
<td></td>
<td>Wednesday</td>
<td>4/27/16</td>
<td>6.6</td>
<td>Logarithmic and Exponential Equations</td>
</tr>
<tr>
<td>15</td>
<td>Monday</td>
<td>5/2/16</td>
<td>6.8</td>
<td>Exponential Growth and Decay Models/Logistic Growth</td>
</tr>
<tr>
<td></td>
<td>Wednesday</td>
<td>5/4/16</td>
<td>Review for Final</td>
<td>Review for Uniform Final Exam</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Saturday</td>
<td>May 7th</td>
<td>9:00-12:00</td>
<td>Uniform Final Exam</td>
</tr>
</tbody>
</table>

*Any changes made to assignment due dates will be announced in class and posted on Canvas

VII. Assignments
Exams: There will be three in-class exams worth 15% of your grade each plus a comprehensive uniform common final exam worth 25% of your grade. You must bring your student I.D. card to each exam.

Exam #1: Wednesday, Feb. 17th
Exam #2: Wednesday, March 16th
Exam #3: Wednesday, April 20th
Final Exam: Saturday, May 7th, 9-12 Room-TBA

Homework Assignments:

1. Online Homework: This will be assigned over MyMathLab (CourseCompass) and will be automatically graded by the computer. With this software you have unlimited attempts at a problem so you have every possibility of attaining a 100% on each of these assignments! Late assignments will be accepted over MyMathLab up until the exam which covers that material, but will accrue a 20% penalty if they are turned in late (this penalty will be automatically induced by the program if you work on the assignment after the deadlines and will only be taken on individual problems worked after the deadline has passed). There will be approximately 13 online assignments and your lowest two scores will be dropped. You must pass the Pre-Requisite Skills/Review Assignment on MML with an 80% or above BEFORE any of the other Hwk assignments will be open for you to work on. (So you should start working on that assignment early).

 Online assignments are due each Monday by the end of the day (11:59 p.m.)

Algebra Application Projects: 3-4 problems will be assigned during the semester that will be an extension to the homework assignments. These problems will require the use of a graphing calculator. You will have approximately two weeks to complete the problem and they will count toward your homework/quiz grade. Algebra Application Problems will incur a 20% penalty for each class period that they are turned in late.

Recitation Attendance or Exam Averages: 10% of your final grade will be determined by the higher of the following
 A) Recitation Attendance/Completion Grade
 B) Exam Grade

Your recitation grade will be calculated for three different intervals. (1/3) of the points will be allocated based upon your attendance/participation at recitation previous to Exam #1 or your Exam #1 grade (whichever is higher), (1/3) of the points for attendance at recitation between Exam #1 and Exam #2 or Exam #2 grade (whichever is higher), and (1/3) of the points for attendance at recitation between Exam #2 and Exam #3 or Exam #3 grade (whichever is higher). Notice that this grading policy allows flexibility for your recitation attendance. It is always beneficial to attend recitation.

VIII. Grading Summary

In-Class Exams: 45%
Final Exam: 25% ***** (If score > exams average……..)
Homework Assignments/Recitation Attendance/Exam Average 20%

Grading Scale:

A: 92-100%
A-: 90-91.99%
B+: 88-89.99%
B: 82-87.99%
B-: 80-81.99%
C+: 78-79.99%
C: 70-77.99%
D: 60-69.99%
F: Below 60%
Computing Technology – You are required to bring a graphing calculator to class every day. Acceptable calculators include the TI-83, TI-84 and TI-nSpire.

IX. Grade Dissemination

Graded homework and tests will be returned during the following class meeting. Course grades will be updated in the Canvas gradebook weekly, which can be found at https://ucdenver.instructure.com/. CU Denver utilizes web grading which is accessed through UCDAccess. Web grading information can be found by going to www.ucdenver.edu/student-services/resources/Registrar/faculty-staff/

COURSE PROCEDURES

X. Course Policies - Grades

Attendance Policy: Your course grade will not be dependent upon class attendance, however, class lectures are a critical part of the learning process. Students who attend class on a regular basis tend to feel more prepared for assessments and hence perform better in the course.

CU Denver Student Attendance and Absences Policy can be found at:

http://www.ucdenver.edu/faculty_staff/employees/policies/Policies%20Library/OAA/StudentAttendance.pdf

Extra Credit Policy: Extra credit will not be offered so work hard from day 1.

Assessment Make-up Policy:

- Exams - If circumstances arise that prevent you from attending an exam, please contact me ahead of time as I will be much more lenient. Unexplained absences will require hard evidence such as a death certificate, hospital paperwork, etc.

- Final Exam – The final exam will be a comprehensive uniform final examination which will occur on Saturday, May 7th from 9-12. The room location will be announced the week before the final. Alternate final exam dates/times are offered in extremely rare circumstances and must be approved by the course captain in advance with documentation provided. Conflicts due to travel plans and work schedules will not be accommodated.

Incomplete Policy: Incomplete grades (I) are not granted for low academic performance. To be eligible for an Incomplete grade, students must (1) successfully complete at least 75 percent of the course, (2) have special circumstances (verification may be required) that preclude the student from attending class and completing graded assignments, and (3) make arrangements to complete missing assignments with the original instructor using a CLAS Course Completion agreement.

XI. Course Policies – Technology and Media

Email – Students can communicate with me regarding attendance, meeting arrangements, grades, and/or questions regarding the course content, assignments, and due dates. You may also send me a message via Canvas. I will check by my CU Denver email and Canvas daily, excluding weekends.

MyMathLab Technical Difficulties – Please contact Pearson Support. You can find a link on http://www.pearsonmylabandmastering.com/northamerica/. In most cases I will not be able to help with these types of issues, but feel free to email me so that I can be more lenient with due dates if necessary.

XI. Getting Help
Instructor Office Hours/By Appointment Feel free to see me with questions not answered during lecture, additional explanation, or homework assistance.

MERC Lab There are Teaching Assistants available to answer your questions in the MERC lab in the North Classroom Building (NC) room 4015. This is an excellent resource! Check with the lab to see their schedule. Try to form a study group to study and learn with; it really works for some people! Realize that there are many ways of learning and a study group may be helpful for you.

Academic Success and Advising Center Helps new freshmen and transfer students through academic advising, schedule planning, time management, personal support and referrals to other on-campus resources.

Career Center The center assists and guides students with understanding and leveraging their skills, personality, values and interests as they choose an academic major and determine a career direction. Services include job search and strategies, resume development and writing, practice interviews and salary negotiation. Employers may benefit from online job posting, resume referrals, on-campus interviewing, career fairs, employer presentations, and networking events.

Disability Resources and Services Office DRS serves the needs of a large and diverse community of students with disabilities, providing accommodations including: assistance in identifying volunteer note-takers, alternative testing, textbooks in alternate format, priority registration, interpreters and referral to the Access center.

First-Year Experience The First Year Experience (FYE) is a comprehensive approach to ensure first year students make a successful transition to college.

Learning Resource Center The Center provides individual and group tutoring, Supplemental Instruction (SI), study skills workshops and ESL support. UCD students are eligible for 1 hour of free tutoring per week.

Scholarship / Resource Office Information about scholarships and guidance on the scholarship application process.

The University of Colorado Denver provides many other services and resources. See http://www.ucdenver.edu/life/services/Pages/index.aspx

XII. Academic Honesty

Students are required to know, understand, and comply with the CU Denver Academic Dishonesty Policy as detailed in the Catalog and on the CLAS website. Academic dishonesty consists of plagiarism, cheating, fabrication and falsification, multiple submission of the same work, misuse of academic materials, and complicity in academic dishonesty. If you are not familiar with the definitions of these offenses, go to http://www.ucdenver.edu/academics/colleges/CLAS/faculty-staff/policies/Pages/DefinitionofAcademicDishonesty.aspx. This course assumes your knowledge of these policies and definitions. Failure to adhere to them can result in possible penalties ranging from failure of this course to dismissal from the University; so, be informed and be careful. If this is unclear to you, ask me. The College of Liberal Arts and Sciences (CLAS) Ethics Bylaws allow the instructor to decide how to respond to an ethics violation, whether by lowering the assignment grade, lowering the course grade, and/or filing charges against the student with the Academic Ethics Committee. Violating the Academic Honor Code can lead to expulsion from the University.

Definition of Academic Dishonesty

Students are expected to know, understand, and comply with the ethical standards of the University. In addition, students have an obligation to inform the appropriate official of any acts of academic dishonesty by other students of the University. Academic dishonesty is defined as a student's use of unauthorized assistance with intent to deceive an instructor or other such person who may be assigned to evaluate the student’s work in meeting course and degree requirements. Examples of academic dishonesty include, but are not limited to, the following:
Plagiarism: Plagiarism is the use of another person’s distinctive ideas or words without acknowledgment. The incorporation of another person’s work into one’s own requires appropriate identification and acknowledgment, regardless of the means of appropriation. The following are considered to be forms of plagiarism when the source is not noted:

1. Word-for-word copying of another person's ideas or words.
2. The mosaic (the interspersing of one’s own words here and there while, in essence, copying another's work).
3. The paraphrase (the rewriting of another’s work, yet still using their fundamental idea or theory).
4. Fabrication of references (inventing or counterfeiting sources).
5. Submission of another's work as one's own.
6. Neglecting quotation marks on material that is otherwise acknowledged.

Acknowledgment is not necessary when the material used is common knowledge.

Cheating: Cheating involves the possession, communication, or use of information, materials, notes, study aids or other devices not authorized by the instructor in an academic exercise, or communication with another person during such an exercise. Examples of cheating are:

1. Copying from another's paper or receiving unauthorized assistance from another during an academic exercise or in the submission of academic material.
2. Using a calculator when its use has been disallowed.
3. Collaborating with another student or students during an academic exercise without the consent of the instructor.

Fabrication and Falsification: Fabrication involves inventing or counterfeiting information, i.e., creating results not obtained in a study or laboratory experiment. Falsification, on the other hand, involves deliberately alternating or changing results to suit one’s needs in an experiment or other academic exercise.

Multiple Submissions: This is the submission of academic work for which academic credit has already been earned, when such submission is made without instructor authorization.

Misuse of Academic Materials: The misuse of academic materials includes, but is not limited to, the following:

1. Stealing or destroying library or reference materials or computer programs.
2. Stealing or destroying another student’s notes or materials, or having such materials in one’s possession without the owner’s permission.
3. Receiving assistance in locating or using sources of information in an assignment when such assistance has been forbidden by the instructor.
4. Illegitimate possession, disposition, or use of examinations or answer keys to examinations.
5. Unauthorized alteration, forgery, or falsification.
6. Unauthorized sale or purchase of examinations, papers, or assignments.

Complicity in Academic Dishonesty: Complicity involves knowingly contributing to another’s acts of academic dishonesty.

Student Code of Conduct: As members of the University community, students are expected to uphold university standards, which include abiding by state civil and criminal laws and all University policies and standards of conduct. These standards are outlined in the student code of conduct which can be found at:
http://www.ucdenver.edu/life/services/standards/students/Pages/default.aspx

XIV. Important Dates to Remember
Spring 2016 CLAS Academic Policies

The following policies, procedures, and deadlines pertain to all students taking classes in the College of Liberal Arts and Sciences (CLAS). They are aligned with the Official University Academic Calendar:

http://www.ucdenver.edu/student-services/resources/Registrar-dev/CourseListings/Pages/AcademicCalendar.aspx

- **Schedule verification:** It is each student's responsibility to verify that their official registration and schedule of classes is correct in their Passport ID portal before classes begin and by the university census date. Failure to verify schedule accuracy is not sufficient reason to justify late adds or drops. Access to a course through Canvas is not evidence of official enrollment.

- **E-mail:** Students must activate and regularly check their official CU Denver e-mail account for university related messages.
 - **Administrative Drops:** Students may be administratively dropped from a class if they never attended or stopped attending, if the course syllabus indicates that the instructor will do this. Students may be administratively dropped if they do not meet the prequisites for the course as detailed in course descriptions.
 - **Late adds and late withdrawals** require a written petition, verifiable documentation, and dean's approval. CLAS undergraduate students should visit the CLAS Advising Office (NC1030) and graduate students should visit the Graduate School (12th floor LSC) to learn more about the petition process and what they need to do to qualify for dean's approval.

- **Waitlists:** The Office of the Registrar notifies students at their CU Denver e-mail account if they are added to a class from a waitlist. Students are not automatically dropped from a class if they never attended, stopped attending, or do not make tuition payments. After waitlists are purged, students must follow late add procedures to be enrolled in a course. Students will have access to Canvas when they are on a waitlist, but this does not mean that a student is enrolled or guaranteed a seat in the course. Students must obtain instructor permission to override a waitlist and this is only possible when there is physical space available in a classroom, according to fire code.

<table>
<thead>
<tr>
<th>Important Dates and Deadlines</th>
<th>All dates and deadlines are in Mountain Time (MT).</th>
</tr>
</thead>
<tbody>
<tr>
<td>January 19, 2016: First day of classes.</td>
<td></td>
</tr>
<tr>
<td>January 24, 2016: Last day to add or waitlist a class using the Passport ID portal.</td>
<td></td>
</tr>
<tr>
<td>January 24, 2016: Last day to drop a class without a $100 drop charge—this includes section changes.</td>
<td></td>
</tr>
<tr>
<td>January 25, 2016: All waitlists are purged. Students should check their schedules in their Passport ID portal to confirm in which classes you are officially enrolled.</td>
<td></td>
</tr>
<tr>
<td>January 26-February 3, 2016, 5 PM: To add a course students must obtain instructor permission using the Instructor Permission to Enroll Form and bring it to the CLAS Advising Office (NC1030) or have their instructor e-mail it to CLAS_Advising@ucdenver.edu.</td>
<td></td>
</tr>
<tr>
<td>February 3, 2016: Census date.</td>
<td></td>
</tr>
<tr>
<td>o 2/3/16, 5 PM: Last day to add full term classes with instructor approval. Adding a class after this date (late add) requires a written petition, verifiable documentation, and dean's approval. After this date, students will be charged the full tuition amount for additional classes added – College Opportunity Fund hours will not be deducted from eligible student's lifetime hours.</td>
<td></td>
</tr>
<tr>
<td>o 2/3/16, 5 PM: Last day to drop full term classes with a financial adjustment on the Passport ID portal. After this date, withdrawing from classes requires instructor signature approval and will appear on student's transcript with a grade of 'W'. After this date, a complete withdrawal (dropping all classes) from the term will require the signature of the dean and no tuition adjustment will be made. Students should consult appropriate service offices (e.g. international status, Financial Aid (loans, grants, and/or scholarships) or Veteran's Student Services) before withdrawing from course(s) to determine any impact for continued enrollment and funding.</td>
<td></td>
</tr>
<tr>
<td>o 2/3/16, 5 PM: Last day to apply for Spring 2016 graduation. Undergraduates must make an appointment and see their academic advisor before this date to apply. Graduate students must complete the Intent to Graduate and Candidate for Degree forms.</td>
<td></td>
</tr>
<tr>
<td>o 2/3/16, 5 PM: Last day to request No Credit or Pass/Fail grade for a class using a schedule adjustment form.</td>
<td></td>
</tr>
<tr>
<td>o 2/3/16, 5 PM: Last day to petition for a reduction in Ph.D. dissertation hours.</td>
<td></td>
</tr>
<tr>
<td>February 4-April 4, 2016, 5 PM: To withdraw from a course, students must obtain instructor permission using the Schedule Adjustment Form and must bring the signed form to the Office of the Registrar. To add a course, students must petition through College/School undergraduate advising offices or the Graduate School, as appropriate.</td>
<td></td>
</tr>
<tr>
<td>March 21-27, 2016: Spring break- no classes, campus open.</td>
<td></td>
</tr>
<tr>
<td>April 5, 2016: The Office of the Registrar now requires both the instructor's signature and a CLAS advisor's/dean's signature on a Schedule Adjustment Form to withdraw from a class. Students should consult their home college advising office for details.</td>
<td></td>
</tr>
<tr>
<td>April 18, 5 PM: Deadline for undergraduate CLAS students to withdraw from a course without filing a late withdrawal petition. Contact CLAS Advising (NC1030 – 303-556-2555).</td>
<td></td>
</tr>
<tr>
<td>May 14, 2016: End of semester.</td>
<td></td>
</tr>
<tr>
<td>June 24, 2016: Final grades available on the Passport ID portal and on transcripts (tentative).</td>
<td></td>
</tr>
</tbody>
</table>

Please contact an academic advisor if you have questions or concerns.