COURSE OVERVIEW

I. Course Description
This is a mathematics course designed to fulfill the CORE University requirements. Topics include angles and trigonometry functions of acute angles, analytic trigonometry, fundamental trigonometric functions and identities including hyperbolic trigonometry and polar coordinate systems. Graphic calculators and/or computer algebra systems are used extensively. Acceptable calculators include the TI-83, TI-84 and TI-nSpire. Applications are emphasized.

Note: No co-credit with MATH 1130. Semester Hours: 3

II. Course Prerequisites
A good understanding of advanced algebra, including the characteristics of the elementary functions and the solutions to equations, is required to successfully complete this trigonometry course. Exposure to a graphing calculator will be assumed.

III. Course Rationale
This course is designed to help students understand the fundamental concepts of trigonometry and to show how trigonometric concepts can be used to model real-world problems. The important ideas of calculus will be foreshadowed and the use of technology will be used to efficiently facilitate the understanding of important trigonometric concepts. Students will attain a deeper understanding of how mathematics relates to the world around them and prepare themselves for further study in calculus and mathematics.

IV. Required Texts and Materials

Algebra and Trigonometry Enhanced with Graphing Utilities (6th Edition) by Sullivan and Sullivan

Option 2 - ≈$167.5: A la Carte Textbook plus MyMathLab Access Code
Option 3 – ≈$95: MyMathLab Access Code (Includes eBook)

If you purchased the software for MATH 1110 (College Algebra) within the last year, then you should have access at no charge. To access MyMathLab go to www.coursecompass.com. Under the Register tab click on Student. Click on ‘OK! Register Now. You will need your University email, the Course ID which is: bouwmeester67731 and either a student access code or a valid credit card.
V. Course Goals and Learning Objectives

CORE Learning Outcomes
1. **Calculate**: Accurately and logically manipulate a mathematical representation to attain desired information.
2. **Represent**: Able to translate between representations to clearly represent information and gain insight. Representations may be expressed symbolically, graphically, numerically, or verbally.
3. **Interpret**: Draw meaningful inferences and communicate insights from mathematical representations. Mathematical representations may include statistical, graphical, algebraic, geometric, or symbolic.
4. **Model**: Develop and/or apply an appropriate mathematical model for a real-world problem. This can be demonstrated by e.g. developing a model, choosing an appropriate model from several, or explaining the primary assumptions needed to use a particular model.

Course Learning Outcomes MATH 1120
The following section lists the Learning Outcomes specific to the course (MATH 1120). Each Learning Outcome reflects one or more of the CORE Learning Outcomes.

Exam 1: 15% of course grade

Angles and Their Measure-Section 7.1
Students will be able to…
- Convert between Decimals, Degrees, Minutes and Seconds (**Core Learning Outcome #1-Calculate**)
- Convert between Degrees and Radians (**Calculate**)
- Find the Arc Length of a Circle (**Calculate**)
- Find the Sector Area of a Circle (**Calculate**)

Right Triangle Trigonometry-Section 7.2
Students will be able to…
- Find the Values of Trig Functions of an Acute Angle (**Represent**)
- Use Fundamental Identities (**Represent**)
- Find the values of the remaining Trig Functions given one (**Interpret**)
- Use the Complementary Angle Theorem (**Calculate**)

Computing the Values of Trigonometric Functions of Acute Angles-Section 7.3
Students will be able to…
- Find the Exact Value of Trigonometric Functions for \(\frac{\pi}{3}\), \(\frac{\pi}{4}\), and \(\frac{\pi}{6}\) (**Calculate**)
- Use a Calculator to Approximate the Trigonometric Functions for Acute Angles (**Calculate**)
- Model and Solve Applied Problems Involving Right Triangles (**Model**)

Trigonometric Functions of Any Angles-Section 7.4
Students will be able to…
- Find the Exact Values of Trigonometric Functions of any Angle (**Interpret**)
- Use Co-terminal Angles to Find the Exact Values of Trigonometric Functions (**Represent**)
- Determine the Signs of the Trigonometric Functions of an Angle in a Given Quadrant (**Interpret**)
- Find the Reference Angle for any given Angle (**Represent**)
- Use a Reference Angle fo Find the Exact Value of a Trigonometric Function (**Represent**)
- Find the Exact Values of Trigonometric Functions of an Angle, Given Information about the Functions (**Interpret**)

Unit Circle Approach: Properties of the Trigonometric Functions-Section 7.5
Students will be able to…
- Find the Exact Values of the Trigonometric Functions Using the Unit Circle (**Interpret**)
- Identify the Domain and Range of the Trigonometric Functions (**Interpret**)
- Use the Periodic Properties to Find the Exact Values of the Trigonometric Functions (**Calculate**)
- Use Even-Odd Properties to Find the Exact Value of the Trigonometric Functions (**Calculate**)

Graphs of the Sine and Cosine Functions-Section 7.6
Students will be able to…
- Graph the Sine/Cosine Functions Using Transformations (**Represent**)
- Determine the Amplitude and Period of Sinusoidal Functions (**Interpret**)
- Graph Sinusoidal Functions Using Key Points (**Represent**)
- Find an Equation for a Sinusoidal Graph (**Represent**)

Graphs of the Tangent, Cotangent, Cosecant and Secant Functions-Section 7.7
Students will be able to…
- Graph Tangent, Cotangent, Secant and Cosecant Functions in the form \(y = Atan(\omega x) + B\) (**Represent**)
Phase Shift: Sinusoidal Curve Fitting - Section 7.8
Students will be able to…
- Graph Sinusoidal Functions of the Form $y = A \sin(\omega x - \phi) + B$ (Represent)
- Build Sinusoidal Models from Data (Model)

Exam 2 – 15% of course grade

The Inverse Sine, Cosine and Tangent Functions - Section 8.1
Students will be able to…
- Find the Exact Value of an Inverse Sine Function (Calculate)
- Find an Approximate Value of an Inverse Sine Function (Calculate)
- Use Properties of Inverse Functions to Find Exact Values of Certain Composition Functions (Calculate)
- Find the Inverse Function of a Trigonometric Function (Calculate)
- Solve Equations Involving Inverse Trigonometric Functions (Calculate)

The Inverse Trigonometric Functions (Continued) - Section 8.2
Students will be able to…
- Find the Exact Value of Expressions Involving the Inverse Sine, Cosine, and Tangent Functions (Interpret)
- Define the Inverse Secant, Cosecant, and Cotangent Functions (Calculate)
- Use a Calculator to Evaluate Inverse Secant, Cosecant, Cotangent Functions (Calculate)
- Write a Trigonometric Expression as an Algebraic Expression (Represent)

Trigonometric Equations – Section 8.3
Students will be able to…
- Solve Equations Involving a Single Trigonometric Function (Calculate)
- Solve Trigonometric Equations Using a Calculator (Calculate)
- Solve Trigonometric Equations in Quadratic Form (Calculate)
- Solve Trigonometric Equations Using Fundamental Identities (Represent)
- Solve Trigonometric Equations Using a Graphing Utility (Calculate/Represent/Interpret)

Trigonometric Identities – Section 8.4
Students will be able to…
- Use Algebra to Simplify Trigonometric Expressions (Represent)
- Establish Identities (Represent)

Sum and Difference Formulas – Section 8.5
Students will be able to…
- Use Sum and Difference Formulas to Find Exact Values (Calculate)
- Use Sum and Difference Formulas to Establish Identities (Represent)
- Solve Trigonometric Equations Linear in Sine and Cosine (Calculate)

Exam 3 – 15% of course grade

Double-Angle and Half-Angle Formulas – Section 8.6
Students will be able to…
- Use Double-angle Formulas to Find Exact Values (Calculate)
- Use Double-angle Formulas to Establish Identities (Represent)
- Use Half-angle Formulas to Find Exact Values (Calculate)

Applications Involving Right Triangles – Section 9.1
Students will be able to…
- Solve Right Triangles (Calculate)
- Solve Applied Problems (Modeling)

The Law of Sines – Section 9.2
Students will be able to…
- Solve SAA, ASA, SSA Triangles (Calculate)
- Solve Applied Problems (Model)

The Law of Cosines – Section 9.3
Students will be able to…
- Solve SSS, or SAS Triangles (Calculate)

The Area of a Triangle – Section 9.4
Students will be able to…
- Find the Area of SAS and SSS Triangles (Calculate)

Polar Coordinates – Section 10.1
Students will be able to…
- Plot Points Using Polar Coordinates (Represent)
- Convert between Polar Coordinates to Rectangular Coordinates (Represent)
- Transform Equations between Polar and Rectangular Forms (Represent)

Polar Equations and Graphs – Section 10.2
Students will be able to…
- Identify and Graph Polar Equations by Converting to Rectangular Equations (Represent)
- Graph Polar equations Using a Graphing Utility (Represent)
- Graph Polar Equations by Plotting Points (Represent)

*Sections 10.3, 10.4 & 10.5 material will be included on the final exam, but will not appear on any of the three regular exams.

The Complex Plane, De Moivre’s Theorem – Section 10.3
Students will be able to…
- Plot Points in the Complex Plane (Represent)
- Convert Complex Numbers Between Rectangular Form and Polar Form (Represent)
- Find Products and Quotients of Complex Numbers in Polar Form (Calculate)
- Use De Moivre’s Theorem (Calculate)

Vectors – Section 10.4
Students will be able to…
- Graph vectors (Represent)
- Find a Position Vector and Add and Subtract Vectors Algebraically (Calculate)
- Find a Scalar Multiple and the Magnitude of a Vector (Calculate)
- Find a Unit Vector and Determine a Vector from its Direction and Magnitude (Calculate)
- Model with Vectors (Model)

The Dot Product – Section 10.5
Students will be able to…
- Find the Dot Product of Two Vectors (Calculate)
- Find the Angle between Two Vectors (Calculate)
- Determine Whether two Vectors are Parallel (Interpret)
- Determine Whether Two Vectors are Orthogonal (Interpret)
- Compute Work (Calculate)
VI. Course Schedule

<table>
<thead>
<tr>
<th>Week</th>
<th>Day</th>
<th>Date</th>
<th>Sections</th>
<th>Topic/Reading</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Tuesday</td>
<td>1/19/16</td>
<td>Syllabus & 7.1</td>
<td>Syllabus</td>
</tr>
<tr>
<td></td>
<td>Thursday</td>
<td>1/21/16</td>
<td>7.1</td>
<td>Angles & Their Measure</td>
</tr>
<tr>
<td>2</td>
<td>Tuesday</td>
<td>1/26/16</td>
<td>7.2</td>
<td>Right Triangle Trigonometry</td>
</tr>
<tr>
<td></td>
<td>Thursday</td>
<td>1/28/16</td>
<td>7.3</td>
<td>Computing Values of Trigonometric Functions</td>
</tr>
<tr>
<td>3</td>
<td>Tuesday</td>
<td>2/2/16</td>
<td>7.4</td>
<td>Trig Functions of Any Angle</td>
</tr>
<tr>
<td></td>
<td>Thursday</td>
<td>2/4/16</td>
<td>7.5</td>
<td>The Unit Circle</td>
</tr>
<tr>
<td>4</td>
<td>Tuesday</td>
<td>2/9/16</td>
<td>7.6</td>
<td>Graphs of Sine & Cosine Functions</td>
</tr>
<tr>
<td></td>
<td>Thursday</td>
<td>2/11/16</td>
<td>7.7</td>
<td>Graphs of Tangent, Cotangent, Secant and Cosecant Functions</td>
</tr>
<tr>
<td>5</td>
<td>Tuesday</td>
<td>2/16/16</td>
<td>Review for Exam</td>
<td>Catch-Up/Review for Exam</td>
</tr>
<tr>
<td></td>
<td>Thursday</td>
<td>2/18/16</td>
<td></td>
<td>Exam #1</td>
</tr>
<tr>
<td>6</td>
<td>Tuesday</td>
<td>2/23/16</td>
<td>7.8</td>
<td>Phase Shift & Sinusoidal Curve Fitting</td>
</tr>
<tr>
<td></td>
<td>Thursday</td>
<td>2/25/16</td>
<td>8.1</td>
<td>Inverse Sine, Cosine and Tangent Functions</td>
</tr>
<tr>
<td>7</td>
<td>Tuesday</td>
<td>3/1/16</td>
<td>8.2</td>
<td>Inverse Trig Functions (Continued)</td>
</tr>
<tr>
<td></td>
<td>Thursday</td>
<td>3/3/16</td>
<td>8.3</td>
<td>Trigonometric Equations</td>
</tr>
<tr>
<td>8</td>
<td>Tuesday</td>
<td>3/8/16</td>
<td>8.4</td>
<td>Trigonometric Identities</td>
</tr>
<tr>
<td></td>
<td>Thursday</td>
<td>3/10/16</td>
<td>8.5</td>
<td>Sum & Difference Formulas</td>
</tr>
<tr>
<td>9</td>
<td>Tuesday</td>
<td>3/15/16</td>
<td>Review for Exam</td>
<td>Catch-Up/Review for Exam</td>
</tr>
<tr>
<td></td>
<td>Thursday</td>
<td>3/17/16</td>
<td></td>
<td>Exam #2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3/21 – 3/25</td>
<td>No Class</td>
<td>Spring Break</td>
</tr>
<tr>
<td>10</td>
<td>Tuesday</td>
<td>3/29/16</td>
<td>8.6</td>
<td>Double & Half Angle Formulas/Pythagoras Day</td>
</tr>
<tr>
<td></td>
<td>Thursday</td>
<td>3/31/16</td>
<td>9.1</td>
<td>Applications Involving Right Triangles</td>
</tr>
<tr>
<td>11</td>
<td>Tuesday</td>
<td>4/5/16</td>
<td>9.2</td>
<td>Law of Sines</td>
</tr>
<tr>
<td></td>
<td>Thursday</td>
<td>4/7/16</td>
<td>9.3 & 9.4</td>
<td>Law of Cosines & Area of a Triangle</td>
</tr>
<tr>
<td>12</td>
<td>Tuesday</td>
<td>4/12/16</td>
<td>10.1</td>
<td>Polar Coordinates</td>
</tr>
<tr>
<td></td>
<td>Thursday</td>
<td>4/14/16</td>
<td>10.2</td>
<td>Polar Equations & Graphs</td>
</tr>
<tr>
<td>13</td>
<td>Tuesday</td>
<td>4/19/16</td>
<td>Review for Exam</td>
<td>Catch-Up/Review for Exam</td>
</tr>
<tr>
<td></td>
<td>Thursday</td>
<td>4/21/16</td>
<td></td>
<td>Exam #3</td>
</tr>
<tr>
<td>14</td>
<td>Tuesday</td>
<td>4/26/16</td>
<td>10.3</td>
<td>The Complex Plane & De Moive’s Theorem</td>
</tr>
<tr>
<td></td>
<td>Thursday</td>
<td>4/28/16</td>
<td>10.4</td>
<td>Vectors</td>
</tr>
<tr>
<td>15</td>
<td>Tuesday</td>
<td>5/3/16</td>
<td>10.5</td>
<td>Dot Product/Catch-Up & Review</td>
</tr>
<tr>
<td></td>
<td>Thursday</td>
<td>5/5/16</td>
<td></td>
<td>Review for Final Exam</td>
</tr>
<tr>
<td>16</td>
<td>Saturday</td>
<td>5/7/16</td>
<td>9:00-12:00</td>
<td>Uniform Final Examination</td>
</tr>
</tbody>
</table>

Any changes made to assignment due dates will be announced in class and posted on Canvas
VII. Assignments

Exams: There will be three in-class exams worth 15% of your grade each plus a comprehensive uniform common final exam worth 25% of your grade. You must bring your student I.D. card to each exam.

<table>
<thead>
<tr>
<th>Exam #1:</th>
<th>Thursday, Feb. 18th</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exam #2:</td>
<td>Thursday, Mar. 17th</td>
</tr>
<tr>
<td>Exam #3:</td>
<td>Thursday, Apr. 21st</td>
</tr>
<tr>
<td>Final Exam:</td>
<td>Saturday, May 7th, 9:00-12:00 Room-TBA</td>
</tr>
</tbody>
</table>

Online Homework: This will be assigned over MyMathLab (CourseCompass) and will be automatically graded by the computer. With this software you have unlimited attempts at a problem so you have every possibility of attaining a 100% on each of these assignments! Late assignments will be accepted over MyMathLab up until the exam which covers that material, but will accrue a 20% penalty if they are turned in late (this penalty will be automatically induced by the program if you work on the assignment after the deadlines and will only be taken on individual problems worked after the deadline has passed). There will be 14 online assignments and your lowest two scores will be dropped.

In Class Quizzes: About every week, a quick quiz over problems ranging over any material previously covered will be administered in class. This weekly quiz will give you an opportunity to write up problems and receive feedback on your final answers before the exams. Quizzes cannot be made up. There will be approximately 12 quizzes throughout the semester and your lowest two scores will be dropped.

Trigonometric Application Projects: Three to four projects will be assigned during the semester that will be an extension to the homework assignments. These projects will require the use of a graphing calculator or computing technology. You will have approximately two weeks to complete the application project. Trigonometric Application Projects will incur a 20% penalty for each class period that they are turned in late.

VIII. Grading Summary

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>In-Class Exams</td>
<td>45%</td>
</tr>
<tr>
<td>Final Exam</td>
<td>25%</td>
</tr>
<tr>
<td>Homework Assignments</td>
<td>10%</td>
</tr>
<tr>
<td>Quizzes</td>
<td>15%</td>
</tr>
<tr>
<td>Application Projects</td>
<td>5%</td>
</tr>
</tbody>
</table>

Grading Scale:

<table>
<thead>
<tr>
<th>Grade</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>92-100%</td>
</tr>
<tr>
<td>A-</td>
<td>90-91.99%</td>
</tr>
<tr>
<td>B+</td>
<td>88-89.99%</td>
</tr>
<tr>
<td>B</td>
<td>82-87.99%</td>
</tr>
<tr>
<td>B-</td>
<td>80-81.99%</td>
</tr>
<tr>
<td>C+</td>
<td>78-79.99%</td>
</tr>
<tr>
<td>C</td>
<td>70-77.99%</td>
</tr>
<tr>
<td>D</td>
<td>60-69.99%</td>
</tr>
<tr>
<td>F</td>
<td>Below 60%</td>
</tr>
</tbody>
</table>

IX. Grade Dissemination

Graded homework/quizzes and tests will be returned during the following class meeting. Course grades will be updated in the Canvas gradebook weekly, which can be found at https://ucdenver.instructure.com/. CU Denver utilizes web grading which is accessed through UCDAccess. Web grading information can be found by going to www.ucdenver.edu/student-services/resources/registrar/faculty-staff/
COURSE PROCEDURES

X. Course Policies - Grades

Attendance Policy: Your course grade will not be dependent upon class attendance, however, class lectures are a critical part of the learning process. Students who attend class on a regular basis tend to feel more prepared for assessments and hence perform better in the course.

CU Denver Student Attendance and Absences Policy can be found at:

http://www.ucdenver.edu/faculty_staff/employees/policies/Policies%20Library/OAA/StudentAttendance.pdf

Extra Credit Policy: Extra credit will not be offered so work hard from day 1.

Assessment Make-up Policy:

- Quizzes – Since I am dropping your two lowest scores, quizzes cannot be made up.
- Exams - If circumstances arise that prevent you from attending an exam, please contact me ahead of time as I will be much more lenient. Unexplained absences will require hard evidence such as a death certificate, hospital paperwork, etc.
- Final Exam – The final exam will be a comprehensive uniform final examination which will occur on Saturday, Dec. 5th from 9-12. The room location will be announced the week before the final. Alternate final exam dates/times are offered in extremely rare circumstances and must be approved by the course captain in advance with documentation provided. Conflicts due to travel plans and work schedules will not be accommodated.

Incomplete Policy: Incomplete grades (I) are not granted for low academic performance. To be eligible for an Incomplete grade, students must (1) successfully complete at least 75 percent of the course, (2) have special circumstances (verification may be required) that preclude the student from attending class and completing graded assignments, and (3) make arrangements to complete missing assignments with the original instructor using a CLAS Course Completion agreement.

XI. Course Policies – Technology and Media

Email – Students can communicate with me regarding attendance, meeting arrangements, grades, and/or questions regarding the course content, assignments, and due dates. You may also send me a message via Canvas. I will check by my CU Denver email and Canvas daily, excluding weekends.

MyMathLab Technical Difficulties – Please contact Pearson Support. You can find a link on http://www.pearsonmylabandmastering.com/northamerica/. In most cases I will not be able to help with these types of issues, but feel free to email me so that I can be more lenient with due dates if necessary.

XII. Getting Help

Instructor Office Hours/By Appointment Feel free to see me with questions not answered during lecture, additional explanation, or homework assistance.

MERC Lab There are Teaching Assistants available to answer your questions in the MERC lab in the North Classroom Building (NC) room 4015. This is an excellent resource! Check with the lab to see their schedule. Try to form a study group to study and learn with; it really works for some people! Realize that there are many ways of learning and a study group may be helpful for you.

Career Center The center assists and guides students with understanding and leveraging their skills, personality, values and interests as they choose an academic major and determine a career direction. Services include job search and strategies, resume development and writing, practice interviews and salary negotiation. Employers may benefit from online job posting, resume referrals, on-campus interviewing, career fairs, employer presentations, and networking events.
Disability Resources and Services Office DRS serves the needs of a large and diverse community of students with disabilities, providing accommodations including: assistance in identifying volunteer note-takers, alternative testing, textbooks in alternate format, priority registration, interpreters and referral to the Access center.

First-Year Experience The First Year Experience (FYE) is a comprehensive approach to ensure first year students make a successful transition to college. Office of Undergraduate Experiences

Learning Resource Center The Center provides individual and group tutoring, Supplemental Instruction (SI), study skills workshops and ESL support. UCD students are eligible for 1 hour of free tutoring per week. Academic Building 1-Suite 2105. Phone: (303) 315-3531.

Scholarship / Resource Office Information about scholarships and guidance on the scholarship application process.

Student Life Office This office encourages students to take advantage of all of the academic resources, out-of-class learning and recreational opportunities that are available throughout the year at CU Denver.

The University of Colorado Denver provides many other services and resources. See http://www.ucdenver.edu/life/services/Pages/index.aspx

XIII. Academic Honesty

Students are required to know, understand, and comply with the CU Denver Academic Dishonesty Policy as detailed in the Catalog and on the CLAS website. Academic dishonesty consists of plagiarism, cheating, fabrication and falsification, multiple submission of the same work, misuse of academic materials, and complicity in academic dishonesty. If you are not familiar with the definitions of these offenses, go to http://www.ucdenver.edu/academics/colleges/CLAS/faculty-staff/policies/Pages/DefinitionofAcademicDishonesty.aspx. This course assumes your knowledge of these policies and definitions. Failure to adhere to them can result in possible penalties ranging from failure of this course to dismissal from the University; so, be informed and be careful. If this is unclear to you, ask me. The College of Liberal Arts and Sciences (CLAS) Ethics Bylaws allow the instructor to decide how to respond to an ethics violation, whether by lowering the assignment grade, lowering the course grade, and/or filing charges against the student with the Academic Ethics Committee. Violating the Academic Honor Code can lead to expulsion from the University.

Definition of Academic Dishonesty

Students are expected to know, understand, and comply with the ethical standards of the University. In addition, students have an obligation to inform the appropriate official of any acts of academic dishonesty by other students of the University. Academic dishonesty is defined as a student's use of unauthorized assistance with intent to deceive an instructor or other such person who may be assigned to evaluate the student’s work in meeting course and degree requirements. Examples of academic dishonesty include, but are not limited to, the following:

Plagiarism: Plagiarism is the use of another person’s distinctive ideas or words without acknowledgment. The incorporation of another person’s work into one's own requires appropriate identification and acknowledgment, regardless of the means of appropriation. The following are considered to be forms of plagiarism when the source is not noted:

1. Word-for-word copying of another person's ideas or words.
2. The mosaic (the interspersing of one’s own words here and there while, in essence, copying another's work).
3. The paraphrase (the rewriting of another’s work, yet still using their fundamental idea or theory).
4. Fabrication of references (inventing or counterfeiting sources).
5. Submission of another's work as one's own.
6. Neglecting quotation marks on material that is otherwise acknowledged.

Acknowledgment is not necessary when the material used is common knowledge.
Cheating: Cheating involves the possession, communication, or use of information, materials, notes, study aids or other devices not authorized by the instructor in an academic exercise, or communication with another person during such an exercise. Examples of cheating are:

1. Copying from another's paper or receiving unauthorized assistance from another during an academic exercise or in the submission of academic material.
2. Using a calculator when its use has been disallowed.
3. Collaborating with another student or students during an academic exercise without the consent of the instructor.

Fabrication and Falsification: Fabrication involves inventing or counterfeiting information, i.e., creating results not obtained in a study or laboratory experiment. Falsification, on the other hand, involves deliberately altering or changing results to suit one's needs in an experiment or other academic exercise.

Multiple Submissions: This is the submission of academic work for which academic credit has already been earned, when such submission is made without instructor authorization.

Misuse of Academic Materials: The misuse of academic materials includes, but is not limited to, the following:

1. Stealing or destroying library or reference materials or computer programs.
2. Stealing or destroying another student’s notes or materials, or having such materials in one’s possession without the owner's permission.
3. Receiving assistance in locating or using sources of information in an assignment when such assistance has been forbidden by the instructor.
4. Illegitimate possession, disposition, or use of examinations or answer keys to examinations.
5. Unauthorized alteration, forgery, or falsification.
6. Unauthorized sale or purchase of examinations, papers, or assignments.

Complicity in Academic Dishonesty: Complicity involves knowingly contributing to another’s acts of academic dishonesty.

Student Code of Conduct: As members of the University community, students are expected to uphold university standards, which include abiding by state civil and criminal laws and all University policies and standards of conduct. These standards are outlined in the student code of conduct which can be found at:

http://www.ucdenver.edu/life/services/standards/students/Pages/default.aspx

XIV. Important Dates to Remember

Spring 2016 CLAS Academic Policies

The following policies, procedures, and deadlines pertain to all students taking classes in the College of Liberal Arts and Sciences (CLAS). They are aligned with the Official University Academic Calendar:

http://www.ucdenver.edu/student-services/resources/Registrar-dev/CourseListings/Pages/AcademicCalendar.aspx

- **Schedule verification:** It is each student’s responsibility to verify that their official registration and schedule of classes is correct in their Passport ID portal before classes begin and by the university census date. Failure to verify schedule accuracy is not sufficient reason to justify late adds or drops. Access to a course through Canvas is not evidence of official enrollment.
- **E-mail:** Students must activate and regularly check their official CU Denver e-mail account for university related messages.
- **Administrative Drops:** Students may be administratively dropped from a class if they never attended or stopped attending, if the course syllabus indicates that the instructor will do this. Students may be administratively dropped if they do not meet the requisites for the course as detailed in course descriptions.
- **Late adds and late withdrawals** require a written petition, verifiable documentation, and dean’s approval. CLAS undergraduate students should visit the CLAS Advising Office (NC1030) and graduate students should visit the Graduate School (12th floor LSC) to learn more about the petition process and what they need to do to qualify for dean’s approval.
- **Waitlists:** The Office of the Registrar notifies students by e-mail if they are added to a class from a waitlist. Students are not automatically dropped from a class if they never attended, stopped attending, or do not make tuition payments. After waitlists are purged, students must follow late add procedures to be enrolled in a course. Students will have access to Canvas when they are on a waitlist, but this does not mean that a student is enrolled or guaranteed a seat in the course. Students must obtain instructor permission to override a waitlist and this is only possible when there is physical space available in a classroom, according to fire code.
Important Dates and Deadlines

All dates and deadlines are in Mountain Time (MT).

- **January 19, 2016:** First day of classes.
- **January 24, 2016:** Last day to add or waitlist a class using the Passport ID portal.
- **January 25, 2016:** Last day to drop a class without a $100 drop charge--this includes section changes.
- **January 26-February 3, 2016, 5 PM:** To add a course students must obtain instructor permission using the Instructor Permission to Enroll Form and bring it to the CLAS Advising Office (NC 1030) or have their instructor e-mail it to CLAS_Advising@ucdenver.edu.
- **February 3, 2016:** Census date.
 - 2/3/16, 5 PM: Last day to add full term classes with instructor approval. Adding a class after this date (late add) requires a written petition, verifiable documentation, and dean’s approval. After this date, students will be charged the full tuition amount for additional classes added – College Opportunity Fund hours will not be deducted from eligible student’s lifetime hours.
 - 2/3/16, 5 PM: Last day to drop full term classes with a financial adjustment on the Passport ID portal. After this date, withdrawing from classes requires instructor signature approval and will appear on student’s transcript with a grade of ‘W’. After this date, a complete withdrawal (dropping all classes) from the term will require the signature of the dean and no tuition adjustment will be made. Students should consult appropriate service offices (e.g. international status, Financial Aid (loans, grants, and/or scholarships) or Veteran’s Student Services) before withdrawing from course(s) to determine any impact for continued enrollment and funding.
 - 2/3/16, 5 PM: Last day to apply for Spring 2016 graduation. Undergraduates must make an appointment and see their academic advisor before this date to apply. Graduate students must complete the Intent to Graduate and Candidate for Degree forms.
 - 2/3/16, 5 PM: Last day to request No Credit or Pass/Fail grade for a class using a schedule adjustment form.
 - 2/3/16, 5 PM: Last day to petition for a reduction in Ph.D. dissertation hours.
- **February 4-April 4, 2016, 5 PM:** To withdraw from a course, students must obtain instructor permission using the Schedule Adjustment Form and must bring the signed form to the Office of the Registrar. To add a course, students must petition through College/School undergraduate advising offices or the Graduate School, as appropriate.
- **March 21-27, 2016:** Spring break- no classes, campus open.
- **April 5, 2016:** The Office of the Registrar now requires both the instructor’s signature and a CLAS advisor’s/dean’s signature on a Schedule Adjustment Form to withdraw from a class. Students should consult their home college advising office for details.
- **April 18, 5 PM:** Deadline for undergraduate CLAS students to withdraw from a course without filing a late withdrawal petition. Contact CLAS Advising (NC 1030 – 303-556-2555).
- **May 14, 2016:** End of semester.
- **June 24, 2016:** Final grades available on the Passport ID portal and on transcripts (tentative).

Please contact an academic advisor if you have questions or concerns.