Instructor: Harold J. Mardones
Term: Spring 2016

Office: NC 4015 (MERC Lab)
Class Meeting Days: Mondays and Wednesdays
Class Meeting Times: 8:00 – 9:50 am
Location: King C. 205

E-Mail: Harold.mardones@ucdenver.edu
Office Hours: Mon/Wed: 10-11:30 NC 4015 (MERC Lab)

Website: Canvas- https://ucdenver.instructure.com/

Course Captain: Gary Olson; garyolson@ucdenver.edu; 303-315-1732; AB1-4112 (Email is best way to contact)
Associate Chair: Stephen Billups; Stephen.Billups@ucdenver.edu; 303-315-1735; AB1-4221

COURSE OVERVIEW

I. Course Description
The second of a three-semester sequence (MATH 1401, 2411, 2421) in Calculus. This mathematics course also fulfills the CORE University requirement for mathematics. The topics include exponential, logarithmic and trigonometric functions, techniques of integration, indeterminate forms, improper integrals, sequences, infinite series and polar calculus. Applications are emphasized. Semester Hours: 4

II. Course Prerequisites
It must be assumed that every student has a good understanding and a working knowledge of college algebra, trigonometry and first semester calculus. MATH 1401 or a comparable course is required.

III. Course Rationale
This course is designed to build upon beginning integration techniques developed in Calculus I and lead toward the use of integration in several different applications and settings. Theory is also emphasized particularly within the study of sequences and infinite series.

IV. Required Texts and Materials

Option 1 - Textbook (3-Hole Punched) plus MyMathLab Access Code
Option 2 - E-book plus MyMathLab Access Code

To access MyMathLab go to http://www.pearsonmylabandmastering.com/northamerica/. Under the Register tab click on Student. Proceed to ‘OK! Register Now’. You will need your University email address (which you check regularly), the Course ID which is: mardones36196 and either a student access code or a valid credit card. If you purchased the text new at the bookstore it will have a student access code which gives you access to the homework software. If you use a credit card to purchase the software it comes with an eBook which you can use for the class.

Note: If you purchased a version of MyMathLab for use in either Fall 2015 or Summer 2015 you should be able to use the same account without having to re-purchase the software/text.
V. Course Goals and Learning Objectives

CORE Learning Outcomes

1. **Calculate**: Accurately and logically manipulate a mathematical representation to attain desired information.
2. **Represent**: Able to translate between representations to clearly represent information and gain insight. Representations may be expressed symbolically, graphically, numerically, or verbally.
3. **Interpret**: Draw meaningful inferences and communicate insights from mathematical representations. Mathematical representations may include statistical, graphical, algebraic, geometric, or symbolic.
4. **Model**: Develop and/or apply an appropriate mathematical model for a real-world problem. This can be demonstrated by e.g. developing a model, choosing an appropriate model from several, or explaining the primary assumptions needed to use a particular model.

Course Learning Outcomes MATH 2411

The following section lists the Learning Outcomes specific to the course (MATH 2411). Each Learning Outcome reflects one or more of the CORE Learning Outcomes.

Students will be able to…

Section 6.1 - Velocity & Net Change
- Calculate displacement and distance traveled from a velocity curve.
- Determine a position function given a velocity function and an initial position.

Section 6.2 - Regions Between Curves
- Sketch a region bounded by two curves and find its area.
- Sketch a compound region bounded by two curves and find its area by integrating with respect to x or with respect to y.

Section 6.3 - Volume by Slicing
- Use the general slicing method to find the volume of simple solids.
- Use the disk method to find the volume of a solid generated when a region is revolved about the x-axis or y-axis.
- Use the washer method to find the volume of a solid generated when a region is revolved about the x-axis or y-axis.
- Find the volume of a solid of revolution formed when a region is revolved about a line other then the x-axis or y-axis.

Section 6.4 - Volume by Shells
- Use the shell method to find the volume of a solid generated by revolving a region about the x-axis, y-axis or some other line.

Section 6.5 – Length of Curves
- Set up and simplify the integral (with respect to x or with respect to y) that gives the length of a curve on a given interval.
- Find the arc length for simple curves by hand on a given interval.
- Use technology to find the arc length of any curve on a given interval.

Section 6.6 - Surface Area
- Find the area of a surface generated when a given curve is revolved about the x-axis or y-axis.

Section 6.7 - Physical Applications
- Find the mass of a thin bar with a given density function.
- Calculate the work required to stretch a spring a certain distance from equilibrium.
- Solve ‘work’ problems related to conical tanks, cylinders, trapezoidal troughs and other figures.

Section 6.10 – Hyperbolic Functions
- Compute derivative of hyperbolic functions.
- Compute the derivative of inverse hyperbolic functions.
- Determine definite and indefinite integrals for hyperbolic functions.

Section 7.1 – Basic Approaches
- Compute definite and indefinite integrals by using substitution, subtle substitutions, completing the square and division with rational functions.
Section 7.2 – Integration by Parts
- Compute definite and indefinite integrals using integration by parts.
- Compute definite and indefinite integrals using repeated integration by parts.
- Use reduction formulas to evaluate indefinite integrals.

Section 7.3 – Trigonometric Integrals
- Evaluate integrals involving powers of \(\sin(x) \) and \(\cos(x) \).
- Evaluate integrals involving products of powers of \(\sin(x) \) and \(\cos(x) \).
- Evaluate integrals involving powers of \(\tan(x) \), \(\sec(x) \), \(\cot(x) \) and \(\csc(x) \).

Section 7.4 – Trigonometric Substitutions
- Evaluate definite and indefinite integrals using trigonometric substitutions of the form \(x = a \sin(\theta), x = a \tan(\theta) \) and \(x = a \sec(\theta) \).

Section 7.5 – Partial Fractions
- Give the partial fraction decomposition for simple linear factors, repeated linear factors and simple irreducible quadratic factors.
- Evaluate integrals using partial fraction decompositions.

Section 7.6 – Other Integration Strategies
- Use a table of integrals to evaluate indefinite integrals.

Section 7.7 – Numerical Integration
- Use the Midpoint Rule, Trapezoid Rule and Simpson's Rule to approximate integrals with a specified number of subintervals.

Section 7.8 – Improper Integrals
- State when improper integrals diverge (when one bound is infinite).
- Evaluate improper integrals that converge (when one bound is infinite).
- Evaluate improper integrals with unbounded integrands or state that they diverge.

Section 7.9 – Intro to Differential Equations
- Solve initial value problems.
- Find the general solution for first-order linear equations.
- Find the general solution for separable differential equations.
- Determine whether an equation is separable and if so, solve the given initial value problem.
- Match an equation with its direction field.

Section 8.1 – Sequence & Series Overview
- Write out the first few terms of an infinite sequence.
- Write out the first few terms of an infinite sequence defined by a recurrence relation.
- Find a recurrence relation that generates a given sequence.
- Find an explicit formula for the nth of a given sequence.
- Determine whether given sequences converge or diverge. If they converge determine what the sequence converges to.
- Find the first four terms of the sequence of partial sums given and infinite series.
- Use partial sums to make a conjecture about the value of an infinite series.

Section 8.2 – Sequences
- Find the limit of a sequence or determine that the limit does not exist.
- Use the squeeze theorem to find the limit of a given sequence or state that the sequence diverges.

Section 8.3 – Infinite Series
- Evaluate geometric sums.
- Evaluate geometric series or state that they diverge.
- Evaluate geometric series with alternating signs or state that they diverge.
- Write repeating decimals as a geometric series and then as a fraction.
- Determine whether telescoping series converge or diverge.

Section 8.4 – Divergence & Integrals
- Use the divergence test to determine whether a given series diverges (or whether the test is inconclusive).
- Use the integral test to determine the convergence or divergence of a given series (or state that the test does not apply).
- Use the p-series test to determine whether given series converge or diverge.
Section 8.5 – Ratio, Root, and Comparison Tests
- Use the ratio test, root test and comparison test to determine whether a given series converges.

Section 8.6 – Alternating Series
- Use the alternating series test to determine whether a given series converges.
- Determine whether a given series converges absolutely, converges conditionally or diverges.

Section 9.1 – Approximating Functions with Polynomials
- Find linear and quadratic approximating polynomials for a given function centered at a given point.
- Find the nth-order Taylor polynomial for a given function centered at 0.
- Find the nth-order Taylor polynomial for a given function that is not centered at 0.
- Use a Taylor polynomial to approximate a given quantity (ex. e^{12}, ln(1.05), cos(-.2), etc.).

Section 9.2 – Properties of Power Series
- Determine the radius of convergence for a given power series and test the endpoints to determine the interval of convergence.
- Find the function represented by a given series.

Section 9.3 – Taylor Series
- Write the first four terms of a Maclaurin series for a given function and write this power series in summation notation.
- Find the first four terms of a Taylor series centered at some value a and then write the power series using summation notation.

Section 9.4 – Working with Taylor Series
- Evaluate limits of functions using Taylor Series.
- Given a function $f(x)$, write the Taylor Series for the function centered about some value a and then differentiate the Taylor Series to find the derivative.
- Identify functions represented by given power series in summation notation.

Section 10.2 – Polar Coordinates
- Graph points in polar coordinates.
- Convert points from Cartesian coordinates to polar coordinates and vice-versa.
- Sketch and name given polar curves.

Section 10.3 – Calculus in Polar
- Find the slope of the line tangent to a polar curve at a given point.
- Find the area of a given region for a polar curve.
<table>
<thead>
<tr>
<th>Week</th>
<th>Day</th>
<th>Date</th>
<th>Sections</th>
<th>Topic/Reading</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Monday</td>
<td>1/18/16</td>
<td>---</td>
<td>Calculus I Review</td>
</tr>
<tr>
<td></td>
<td>Wednesday</td>
<td>1/20/16</td>
<td>6.1</td>
<td>Velocity and Net Change; Review</td>
</tr>
<tr>
<td>2</td>
<td>Monday</td>
<td>1/25/16</td>
<td>6.2</td>
<td>Regions Between Curves; Review</td>
</tr>
<tr>
<td></td>
<td>Wednesday</td>
<td>1/27/16</td>
<td>6.3</td>
<td>Volumes by Slicing</td>
</tr>
<tr>
<td>3</td>
<td>Monday</td>
<td>2/1/16</td>
<td>6.4 & 6.5</td>
<td>Volumes by Shells, Lengths of Curves</td>
</tr>
<tr>
<td></td>
<td>Wednesday</td>
<td>2/3/16</td>
<td>6.6</td>
<td>Surface Area</td>
</tr>
<tr>
<td>4</td>
<td>Monday</td>
<td>2/8/16</td>
<td>6.7</td>
<td>Physical Applications</td>
</tr>
<tr>
<td></td>
<td>Wednesday</td>
<td>2/10/16</td>
<td>6.10, 7.1</td>
<td>Hyperbolic Functions; Basic Approaches</td>
</tr>
<tr>
<td>5</td>
<td>Monday</td>
<td>2/15/16</td>
<td>7.2</td>
<td>Integration by Parts; Exam Review</td>
</tr>
<tr>
<td></td>
<td>Wednesday</td>
<td>2/17/16</td>
<td>7.3</td>
<td>Trigonometric Integrals</td>
</tr>
<tr>
<td>6</td>
<td>Monday</td>
<td>2/22/16</td>
<td>7.4 REVIEW</td>
<td>Trigonometric Substitutions</td>
</tr>
<tr>
<td></td>
<td>Wednesday</td>
<td>2/24/16</td>
<td>Exam #1</td>
<td>Exam #1: 6.1 – 6.7, 6.10, 7.1-7.4</td>
</tr>
<tr>
<td>7</td>
<td>Monday</td>
<td>2/29/16</td>
<td>7.5</td>
<td>Partial Fractions</td>
</tr>
<tr>
<td></td>
<td>Wednesday</td>
<td>3/2/16</td>
<td>7.6 & 7.7</td>
<td>Other Integration Strategies & Numerical Integration</td>
</tr>
<tr>
<td>8</td>
<td>Monday</td>
<td>3/7/16</td>
<td>7.8</td>
<td>Improper Integrals</td>
</tr>
<tr>
<td></td>
<td>Wednesday</td>
<td>3/9/16</td>
<td>7.9</td>
<td>Introduction to Differential Equations</td>
</tr>
<tr>
<td>9</td>
<td>Monday</td>
<td>3/14/16</td>
<td>REVIEW</td>
<td>Sequences and Infinite Series Overview; Exam Review</td>
</tr>
<tr>
<td></td>
<td>Wednesday</td>
<td>3/16/16</td>
<td>Exam #2</td>
<td>Exam #2: 7.1 – 7.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3/21 – 3/27</td>
<td>No Classes</td>
<td>SPRING BREAK</td>
</tr>
<tr>
<td>10</td>
<td>Monday</td>
<td>3/28/16</td>
<td>8.1,2</td>
<td>Sequences</td>
</tr>
<tr>
<td></td>
<td>Wednesday</td>
<td>3/30/16</td>
<td>8.3</td>
<td>Infinite Series</td>
</tr>
<tr>
<td>11</td>
<td>Monday</td>
<td>4/4/16</td>
<td>8.4</td>
<td>Divergence & Integrals</td>
</tr>
<tr>
<td></td>
<td>Wednesday</td>
<td>4/6/16</td>
<td>8.5</td>
<td>Ratio, Root, and Comparison Tests</td>
</tr>
<tr>
<td>12</td>
<td>Monday</td>
<td>4/11/16</td>
<td>8.6</td>
<td>Alternating Series</td>
</tr>
<tr>
<td></td>
<td>Wednesday</td>
<td>4/13/16</td>
<td>9.1</td>
<td>Approximating Functions with Polynomials</td>
</tr>
<tr>
<td>13</td>
<td>Monday</td>
<td>4/18/16</td>
<td>9.2</td>
<td>Properties of Power Series</td>
</tr>
<tr>
<td></td>
<td>Wednesday</td>
<td>4/20/16</td>
<td>Exam #3</td>
<td>Exam #3: 8.2 – 8.6, 9.1</td>
</tr>
<tr>
<td>14</td>
<td>Monday</td>
<td>4/25/16</td>
<td>9.3 & 9.4</td>
<td>Taylor Series; Working with Taylor Series</td>
</tr>
<tr>
<td></td>
<td>Wednesday</td>
<td>4/27/16</td>
<td>10.2</td>
<td>Polar Coordinates</td>
</tr>
<tr>
<td>15</td>
<td>Monday</td>
<td>5/2/16</td>
<td>10.3</td>
<td>Calculus in Polar</td>
</tr>
<tr>
<td></td>
<td>Wednesday</td>
<td>5/4/16</td>
<td>Catch-Up/Review</td>
<td>Final Exam Review</td>
</tr>
<tr>
<td>FINAL</td>
<td>Saturday</td>
<td>Saturday May 7th</td>
<td>9:00-12:00</td>
<td>Uniform Final Exam</td>
</tr>
</tbody>
</table>

Any changes made to assignment due dates will be announced in class and posted on Canvas
VII. Assignments

Exams: There will be three in-class exams worth 45% of your final grade plus a comprehensive uniform common final exam worth 25% of your grade. You must bring your student I.D. card to each exam.

- Exam #1: Wednesday February 24th
- Exam #2: Wednesday March 16th
- Exam #3: Wednesday April 20th
- Final Exam: Saturday, May 7th, 9-12 Room-TBA***

Homework Assignments:

1. Online Homework: This will be assigned over MyMathLab (CourseCompass) and will be automatically graded by the computer. With this software you have unlimited attempts at a problem so you have every possibility of attaining a 100% on each of these assignments! Late assignments will be accepted over MyMathLab up until the exam which covers that material, but will accrue a 20% penalty. This penalty will be automatically induced by the program if you work on the assignment after the deadlines and will only be taken on individual problems worked after the deadline has passed. Your best 12 online homework assignments will count toward your final course grade.

 Online Homework Assignments are due each Tuesday by the end of the day (11:59 pm)

2. Written Homework: The second portion of the assignment will be a short set of problems from the textbook that I assign at the beginning of the week (not every week). A random subset of problems will be graded for accuracy each week. Work should be neatly shown and legible to receive credit. No written homework assignments will be accepted late. You are able to work together in doing homework assignments, however, copying someone’s assignments will not be beneficial for learning. Your best 6 homework assignments will count toward your final course grade.

 Written Homework Assignments are due each Wednesday at the start of class (8:00 am)

Calculus Application Projects: 1-2 problems will be assigned during the semester that will be an extension to the homework assignments. These problems will require the use of a graphing calculator or Wolfram Alpha. You will have approximately two weeks to complete the problem and they will count toward your homework grade. Calculus Application Problems will incur a 20% penalty for each class period that they are turned in late.

VIII. Grading Summary

In-Class Exams: 45%
Final Exam: 25% (If…….)
Homework Assignments/Application Problems: 30%

Grading Scale:
- A: 92-100%
- A-: 90-91.99%
- B+: 88-89.99%
- B: 82-87.99%
- B-: 80-81.99%
- C+: 78-79.99%
- C: 70-77.99%
- D: 60-69.99%
- F: Below 60%
Computing Technology – During the semester we will explore calculus graphically, numerically and algebraically. This course will utilize Wolfram Alpha technology along with the TI-89 Calculator/App.

IX. Grade Dissemination

Graded homework and tests will be returned during the following class meeting. Course grades will be updated in the Canvas gradebook weekly, which can be found at https://ucdenver.instructure.com/. CU Denver utilizes web grading which is accessed through UCDAccess. Web grading information can be found by going to www.ucdenver.edu/student-services/resources/registrar/faculty-staff/

COURSE PROCEDURES

X. Course Policies - Grades

Attendance Policy: Your course grade will not be dependent upon class attendance, however, class lectures are a critical part of the learning process. Students who attend class on a regular basis tend to feel more prepared for assessments and hence perform better in the course.

CU Denver Student Attendance and Absences Policy can be found at:

http://www.ucdenver.edu/faculty_staff/employees/policies/PolicyLibrary/OAA/StudentAttendance.pdf

Extra Credit Policy: Extra credit will not be offered so work hard from day one.

Assessment Make-up Policy:

- Exams - If circumstances arise that prevent you from attending an exam, please contact me ahead of time as I will be much more lenient. Unexplained absences will require hard evidence such as a death certificate, hospital paperwork, etc.
- Final Exam – The final exam will be a comprehensive uniform final examination which will occur on Saturday, May 7th from 9-12 am. The room location will be announced the week before the final. Alternate final exam dates/times are offered in extremely rare circumstances and must be approved by the course captain in advance with documentation provided. Conflicts due to travel plans and work schedules will not be accommodated.

Incomplete Policy: Incomplete grades (I) are not granted for low academic performance. To be eligible for an Incomplete grade, students must (1) successfully complete at least 75 percent of the course, (2) have special circumstances (verification may be required) that preclude the student from attending class and completing graded assignments, and (3) make arrangements to complete missing assignments with the original instructor using a CLAS Course Completion agreement.

XI. Course Policies – Technology and Media

Email – Students can communicate with me regarding attendance, meeting arrangements, grades, and/or questions regarding the course content, assignments, and due dates. You may also send me a message via Canvas. I will check by my CU Denver email and Canvas daily, excluding weekends.

MyMathLab Technical Difficulties – Please contact Pearson Support. You can find a link on http://www.pearsonmylabandmastering.com/northamerica/. In most cases I will not be able to help with these types of issues, but feel free to email me so that I can be more lenient with due dates if necessary.

XI. Getting Help

Instructor Office Hours/By Appointment Feel free to see me with questions not answered during lecture, additional explanation, or homework assistance.
MERC Lab There are Teaching Assistants available to answer your questions in the MERC lab in the North Classroom Building (NC) room 4015. This is an excellent resource! Check with the lab to see their schedule. Try to form a study group to study and learn with; it really works for some people! Realize that there are many ways of learning and a study group may be helpful for you.

Academic Success and Advising Center Helps new freshmen and transfer students through academic advising, schedule planning, time management, personal support and referrals to other on-campus resources.

Career Center The center assists and guides students with understanding and leveraging their skills, personality, values and interests as they choose an academic major and determine a career direction. Services include job search and strategies, resume development and writing, practice interviews and salary negotiation. Employers may benefit from online job posting, resume referrals, on-campus interviewing, career fairs, employer presentations, and networking events.

Disability Resources and Services Office DRS serves the needs of a large and diverse community of students with disabilities, providing accommodations including: assistance in identifying volunteer note-takers, alternative testing, textbooks in alternate format, priority registration, interpreters and referral to the Access center.

First-Year Experience The First Year Experience (FYE) is a comprehensive approach to ensure first year students make a successful transition to college. Office of Undergraduate Experiences

Learning Resource Center The Center provides individual and group tutoring, Supplemental Instruction (SI), study skills workshops and ESL support. UCD students are eligible for 1 hour of free tutoring per week.

Scholarship / Resource Office Information about scholarships and guidance on the scholarship application process.

The University of Colorado Denver provides many other services and resources. See http://www.ucdenver.edu/life/services/Pages/index.aspx

XII. Academic Honesty

Students are required to know, understand, and comply with the CU Denver Academic Dishonesty Policy as detailed in the Catalog and on the CLAS website. Academic dishonesty consists of plagiarism, cheating, fabrication and falsification, multiple submission of the same work, misuse of academic materials, and complicity in academic dishonesty. If you are not familiar with the definitions of these offenses, go to http://www.ucdenver.edu/academics/colleges/CLAS/faculty-staff/policies/Pages/DefinitionofAcademicDishonesty.aspx. This course assumes your knowledge of these policies and definitions. Failure to adhere to them can result in possible penalties ranging from failure of this course to dismissal from the University; so, be informed and be careful. If this is unclear to you, ask me. The College of Liberal Arts and Sciences (CLAS) Ethics Bylaws allow the instructor to decide how to respond to an ethics violation, whether by lowering the assignment grade, lowering the course grade, and/or filing charges against the student with the Academic Ethics Committee. Violating the Academic Honor Code can lead to expulsion from the University.

Definition of Academic Dishonesty

Students are expected to know, understand, and comply with the ethical standards of the University. In addition, students have an obligation to inform the appropriate official of any acts of academic dishonesty by other students of the University. Academic dishonesty is defined as a student's use of unauthorized assistance with intent to deceive an instructor or other such person who may be assigned to evaluate the student’s work in meeting course and degree requirements. Examples of academic dishonesty include, but are not limited to, the following:
Plagiarism: Plagiarism is the use of another person’s distinctive ideas or words without acknowledgment. The incorporation of another person’s work into one’s own requires appropriate identification and acknowledgment, regardless of the means of appropriation. The following are considered to be forms of plagiarism when the source is not noted:

1. Word-for-word copying of another person's ideas or words.
2. The mosaic (the interspersing of one’s own words here and there while, in essence, copying another's work).
3. The paraphrase (the rewriting of another’s work, yet still using their fundamental idea or theory).
4. Fabrication of references (inventing or counterfeiting sources).
5. Submission of another’s work as one's own.
6. Neglecting quotation marks on material that is otherwise acknowledged.
Acknowledgment is not necessary when the material used is common knowledge.

Cheating: Cheating involves the possession, communication, or use of information, materials, notes, study aids or other devices not authorized by the instructor in an academic exercise, or communication with another person during such an exercise. Examples of cheating are:

1. Copying from another’s paper or receiving unauthorized assistance from another during an academic exercise or in the submission of academic material.
2. Using a calculator when its use has been disallowed.
3. Collaborating with another student or students during an academic exercise without the consent of the instructor.

Fabrication and Falsification: Fabrication involves inventing or counterfeiting information, i.e., creating results not obtained in a study or laboratory experiment. Falsification, on the other hand, involves deliberately alternating or changing results to suit one's needs in an experiment or other academic exercise.

Multiple Submissions: This is the submission of academic work for which academic credit has already been earned, when such submission is made without instructor authorization.

Misuse of Academic Materials: The misuse of academic materials includes, but is not limited to, the following:

1. Stealing or destroying library or reference materials or computer programs.
2. Stealing or destroying another student’s notes or materials, or having such materials in one’s possession without the owner’s permission.
3. Receiving assistance in locating or using sources of information in an assignment when such assistance has been forbidden by the instructor.
4. Illegitimate possession, disposition, or use of examinations or answer keys to examinations.
5. Unauthorized alteration, forgery, or falsification.
6. Unauthorized sale or purchase of examinations, papers, or assignments.

Complicity in Academic Dishonesty: Complicity involves knowingly contributing to another’s acts of academic dishonesty.

Student Code of Conduct: As members of the University community, students are expected to uphold university standards, which include abiding by state civil and criminal laws and all University policies and standards of conduct. These standards are outlined in the student code of conduct which can be found at:

http://www.ucdenver.edu/life/services/standards/students/Pages/default.aspx

Spring 2016 CLAS Academic Policies

The following policies, procedures, and deadlines pertain to all students taking classes in the College of Liberal Arts and Sciences (CLAS). They are aligned with the Official University Academic Calendar:

http://www.ucdenver.edu/student-services/resources/Registrar-dev/CourseListings/Pages/AcademicCalendar.aspx

- **Schedule verification**: It is each student’s responsibility to verify that their official registration and schedule of classes is correct in their
Passport ID portal before classes begin and by the university census date. Failure to verify schedule accuracy is not sufficient reason to justify late adds or drops. Access to a course through Canvas is not evidence of official enrollment.

- **E-mail:** Students must activate and regularly check their official CU Denver e-mail account for university related messages.
 - **Administrative Drops:** Students may be administratively dropped from a class if they never attended or stopped attending, if the course syllabus indicates that the instructor will do this. Students may be administratively dropped if they do not meet the requisites for the course as detailed in course descriptions.
 - **Late adds and late withdrawals** require a written petition, verifiable documentation, and dean’s approval. CLAS undergraduate students should visit the CLAS Advising Office (NC1030) and graduate students should visit the Graduate School (12th floor LSC) to learn more about the petition process and what they need to do to qualify for dean’s approval.

- **Waitlists:** The Office of the Registrar notifies students at their CU Denver e-mail account if they are added to a class from a waitlist. Students are not automatically dropped from a class if they never attended, stopped attending, or do not make tuition payments. After waitlists are purged, students must follow late add procedures to be enrolled in a course. Students will have access to Canvas when they are on a waitlist, but this does not mean that a student is enrolled or guaranteed a seat in the course. Students must obtain instructor permission to override a waitlist and this is only possible when there is physical space available in a classroom, according to fire code.

Important Dates and Deadlines

All dates and deadlines are in Mountain Time (MT).

- **January 19, 2016:** First day of classes.
- **January 24, 2016:** Last day to add or waitlist a class using the Passport ID portal.
- **January 24, 2016:** Last day to drop a class without a $100 drop charge--this includes section changes.
- **January 25, 2016:** All waitlists are purged. Students should check their schedules in their Passport ID portal to confirm in which classes you are officially enrolled.
- **January 26-February 3, 2016, 5 PM:** To add a course students must obtain instructor permission using the **Instructor Permission to Enroll Form** and bring it to the CLAS Advising Office (NC1030) or have their instructor e-mail it to CLAS_Advising@ucdenver.edu.
- **February 3, 2016:** Census date.
 - 2/3/16, 5 PM: Last day to add full term classes with instructor approval. Adding a class after this date (late add) requires a written petition, verifiable documentation, and dean’s approval. After this date, students will be charged the full tuition amount for additional classes added – College Opportunity Fund hours will not be deducted from eligible student’s lifetime hours.
 - 2/3/16, 5 PM: Last day to drop full term classes with a financial adjustment on the Passport ID portal. After this date, withdrawing from classes requires instructor signature approval and will appear on student’s transcript with a grade of ‘W’. After this date, a complete withdrawal (dropping all classes) from the term will require the signature of the dean and no tuition adjustment will be made. Students should consult appropriate service offices (e.g. international status, Financial Aid (loans, grants, and/or scholarships) or Veteran’s Student Services) before withdrawing from course(s) to determine any impact for continued enrollment and funding.
 - 2/3/16, 5 PM: Last day to apply for Spring 2016 graduation. Undergraduates must make an appointment and see their academic advisor before this date to apply. Graduate students must complete the Intent to Graduate and Candidate for Degree forms.
 - 2/3/16, 5 PM: Last day to request No Credit or Pass/Fail grade for a class using a schedule adjustment form.
 - 2/3/16, 5 PM: Last day to petition for a reduction in Ph.D. dissertation hours.
- **February 4-April 4, 2016, 5 PM:** To withdraw from a course, students must obtain instructor permission using the **Schedule Adjustment Form** and must bring the signed form to the Office of the Registrar. To add a course, students must petition through College/School undergraduate advising offices or the Graduate School, as appropriate.
- **March 21-27, 2016:** Spring break- no classes, campus open.
- **April 5, 2016:** The Office of the Registrar now requires both the instructor’s signature and a CLAS advisor’s/dean’s signature on a Schedule Adjustment Form to withdraw from a class. Students should consult their home college advising office for details.
- **April 18, 5 PM:** Deadline for undergraduate CLAS students to withdraw from a course without filing a late withdrawal petition. Contact CLAS Advising (NC 1030 – 303-556-2555).
- **May 14, 2016:** End of semester.
- **June 24, 2016:** Final grades available on the Passport ID portal and on transcripts (tentative).

Please contact an academic advisor if you have questions or concerns.