Large scale electronic structure calculations with the LOBPCG method

François Bottin1, Stéphane Leroux1, Andrew Knyazev2, Gilles Zérah1

1 Département de Physique Théorique et Appliquée, CEA-DAM Ile de France
2 Department of Mathematical Sciences, University of Colorado at Denver

Copper Mountain Conference 2008
Large scale electronic structure calculations with the LOBPCG method

Parallelization: one of the main computational tasks

- Large supercell *ab initio* calculations are very time consuming.
- Increase of the power and number of processors of supercomputers

<table>
<thead>
<tr>
<th>Site</th>
<th>Computer</th>
<th>kProc</th>
<th>Tflops</th>
</tr>
</thead>
<tbody>
<tr>
<td>DOE/NNSA/LLNL (US)</td>
<td>BlueGene</td>
<td>212</td>
<td>478</td>
</tr>
<tr>
<td>Forschungszentrum Juelich (D)</td>
<td>Blue Gene/P</td>
<td>65</td>
<td>167</td>
</tr>
<tr>
<td>New Mexico Computing Center (US)</td>
<td>SGI</td>
<td>14</td>
<td>126</td>
</tr>
<tr>
<td>Computational Res. Lab. (India)</td>
<td>EKA Cluster Xeon</td>
<td>14</td>
<td>117</td>
</tr>
<tr>
<td>Government Agency (Sweden)</td>
<td>Cluster, Xeon</td>
<td>13</td>
<td>102</td>
</tr>
</tbody>
</table>

- **Aim:** to use and to be efficient on these supercomputers.
Large scale electronic structure calculations with the LOBPCG method

1. Theoretical background
 - The Norm-Conserving method (NC)
 - The Projector Augmented-Wave method (PAW)
 - The self-consistent loop (SCF)
 - Locally Optimal Block Preconditioned Conjugate Gradient method (LOBPCG)
 - LOBPCG method versus CG

2. BandFFT parallelization
 - Implementation

3. BandFFT Results
 - Benchmarks
 - Norm-conserving Results
 - PAW results
 - Adding k-points parallelization

4. Tests with LOBPCGII
 - Avoiding the 3mX3m RR
 - LobpcgII: discussion
 - LOBPCGI method versus LOBPCGII

5. Conclusion – Prospects
 - Conclusion
1. **Theoretical background**
- *The Norm-Conserving method (NC)*
- *The Projector Augmented-Wave method (PAW)*
- *The self-consistent loop (SCF)*
- *Locally Optimal Block Preconditioned Conjugate Gradient method (LOBPCG)*
- LOBPCG method versus CG

2. **BandFFT parallelization**
 - Implementation

3. **BandFFT Results**
 - Benchmarks
 - Norm-conserving Results
 - PAW results
 - Adding k-points parallelization

4. **Tests with LOBPCGII**
 - Avoiding the 3mX3m RR
 - LobpcgII: discussion
 - LOBPCGI method versus LOBPCGII

5. **Conclusion – Prospects**
 - Conclusion
Large scale electronic structure calculations with the LOBPCG method

The Norm-Conserving method (NC)

Hamiltonian

\[\tilde{H} = -\frac{\Delta}{2} + v_{\text{loc}} + \sum_{I} \sum_{lm \in I} \frac{\langle \tilde{P}_{lm}^{I} | \tilde{P}_{lm}^{I} \rangle}{\langle \tilde{P}_{lm}^{I} | \tilde{\Phi}_{lm}^{I} \rangle} \quad \text{with} \quad \tilde{H} \tilde{\Psi}_{nk} = \epsilon_{nk} \tilde{\Psi}_{nk} \]

Density

\[\tilde{n}(r) = \sum_{nk} f_{nk} |\tilde{\Psi}_{nk}(r)|^2 \]
Large scale electronic structure calculations with the LOBPCG method

The Projector Augmented-Wave method (PAW)

Hamiltonian

\[\hat{H} = -\frac{\Delta}{2} + v_{\text{loc}} + \sum_{I} \sum_{ij \in I} |\tilde{P}_i^I\rangle D_{ij}^I \langle \tilde{P}_j^I| \quad \text{with} \quad \hat{H}\tilde{\Psi}_{nk} = \epsilon_{nk} O\tilde{\Psi}_{nk} \]

Densities – Overlap operator

\[\tilde{n}(r) \quad \text{and} \quad \rho_{ij}^I = \sum_{nk} f_{nk} \langle \tilde{\Psi}_{nk} | \tilde{P}_i^I \rangle \langle \tilde{P}_j^I | \tilde{\Psi}_{nk} \rangle \]

\[O = I + \sum_{I} \sum_{ij \in I} |\tilde{P}_i^I\rangle (\langle \Phi^I_i|\Phi^I_j\rangle) - (\langle \tilde{\Phi}^I_i|\tilde{\Phi}^I_j\rangle) \langle \tilde{P}_j^I| \]

\[n(r) = \tilde{n}(r) + \sum_{I} (n^{1,I}(r) - \tilde{n}^{1,I}(r)) \]
Large scale electronic structure calculations with the LOBPCG method

SCF loop

\[\tilde{\Psi}_n(\mathbf{r}) = \sum_G c_n(\mathbf{G}) e^{i(\mathbf{k} + \mathbf{G}) \cdot \mathbf{r}} \]

\[\tilde{\Psi}_n(\mathbf{r}) = [\tilde{n} + \hat{n}](\mathbf{r}) \text{ and } \rho_{ij} \leftarrow \{c_n(\mathbf{G}); \epsilon_n\} \]

\[\mathbf{v}_{\text{loc}}(\mathbf{r}) \text{ and } \mathbf{v}_{\text{nl}}(\mathbf{r}) \]

\[\langle e^{i(\mathbf{k} + \mathbf{G}) \cdot \mathbf{r}} | \hat{H} | \tilde{\Psi}_n \rangle = \epsilon_n \langle e^{i(\mathbf{k} + \mathbf{G}) \cdot \mathbf{r}} | \mathcal{O} | \tilde{\Psi}_n \rangle \]

\[| \hat{H} - \epsilon_n \mathcal{O} | = 0 \]
Large scale electronic structure calculations with the LOBPCG method

SCF loop

\[\tilde{\Psi}_n(r) = \sum_G c_n(G)e^{i(k+G)\cdot r} \]

\[[\hat{n} + \hat{\rho}](r) \quad \text{and} \quad \rho_{ij} \quad \leftrightarrow \quad \{c_n(G); \epsilon_n\} \]

\[v_{\text{loc}}(r) \quad \text{and} \quad v_{\text{nl}}(r) \]

\[\langle e^{i(k+G)\cdot r} | \tilde{\mathcal{H}} | \tilde{\Psi}_n \rangle = \epsilon_n \langle e^{i(k+G)\cdot r} | \mathcal{O} | \tilde{\Psi}_n \rangle \]

Time consuming parts

- The non-local like terms.
Large scale electronic structure calculations with the LOBPCG method

SCF loop

\[
\tilde{\Psi}_n(r) = \sum_G c_n(G)e^{i(k+G).r} \\
[\tilde{n} + \hat{n}](r) \quad \text{and} \quad \rho_{ij} \quad \leftarrow \quad \{c_n(G); \epsilon_n\} \\
v_{\text{loc}}(r) \quad \text{and} \quad v_{n1}(r) \quad \quad \quad \quad |\tilde{H} - \epsilon_n \mathcal{O}| = 0 \\
\langle e^{i(k+G).r} | \tilde{H} | \tilde{\Psi}_n \rangle = \epsilon_n \langle e^{i(k+G).r} | \mathcal{O} | \tilde{\Psi}_n \rangle
\]

Time consuming parts

- The non-local like terms.
- The resolution of the KS equations (LOBPCG).
Large scale electronic structure calculations with the LOBPCG method

SCF loop

\[\tilde{\Psi}_n(\mathbf{r}) = \sum_{\mathbf{G}} c_n(\mathbf{G}) e^{i(\mathbf{k}+\mathbf{G}) \cdot \mathbf{r}} \]

\[[\hat{n} + \hat{n}](\mathbf{r}) \quad \text{and} \quad \rho_{ij} \quad \leftarrow \quad \{c_n(\mathbf{G}); \epsilon_n\} \]

\[v_{\text{loc}}(\mathbf{r}) \quad \text{and} \quad v_{n1}(\mathbf{r}) \quad |\tilde{\mathcal{H}} - \epsilon_n \mathcal{O}| = 0 \]

\[\langle e^{i(\mathbf{k}+\mathbf{G}) \cdot \mathbf{r}} | \tilde{\mathcal{H}} | \tilde{\Psi}_n \rangle = \epsilon_n \langle e^{i(\mathbf{k}+\mathbf{G}) \cdot \mathbf{r}} | \mathcal{O} | \tilde{\Psi}_n \rangle \]

Time consuming parts

- The non-local like terms.
- The resolution of the KS equations (LOBPCG).
- The diagonalisation within the sub-space.
Theory
NC
PAW
SCF
LOBPCG
LOBPCG VS
CG
Implementation
Principles
Results
Benchmarks
NC
PAW
k-points
Implementation
LOBPCG
Hypothesis
LOBPCG VS
CG
Conclusion
Conclusion

Large scale electronic structure calculations with the LOBPCG method

SCF loop

\[\tilde{\Psi}_n(\mathbf{r}) = \sum_G c_n(G) e^{i(\mathbf{k} + G) \cdot \mathbf{r}} \]

\[[\tilde{n} + \hat{n}](\mathbf{r}) \quad \text{and} \quad \rho_{ij} \quad \leftarrow \quad \{c_n(G); \epsilon_n\} \]

\[v_{\text{loc}}(\mathbf{r}) \quad \text{and} \quad v_{\text{n1}}(\mathbf{r}) \quad | \tilde{\mathcal{H}} - \epsilon_n \mathcal{O} | = 0 \]

\[\langle e^{i(\mathbf{k} + G) \cdot \mathbf{r}} | \tilde{\mathcal{H}} | \tilde{\Psi}_n \rangle = \epsilon_n \langle e^{i(\mathbf{k} + G) \cdot \mathbf{r}} | \mathcal{O} | \tilde{\Psi}_n \rangle \]

Time consuming parts

- The non-local like terms.
- The resolution of the KS equations (LOBPCG).
- The diagonalisation within the sub-space.
- The calculation of the density and local potential (FFT).
Large scale electronic structure calculations with the LOBPCG method

SCF loop

\[\tilde{\Psi}_n(r) = \sum_G c_n(G)e^{i(k+G) \cdot r} \]

\[[\hat{n} + \hat{n}](r) \quad \text{and} \quad \rho_{ij} \quad \longleftrightarrow \quad \{c_n(G); \epsilon_n\} \]

\[v_{\text{loc}}(r) \quad \text{and} \quad v_{\text{n1}}(r) \]

\[|\tilde{\mathcal{H}} - \epsilon_n \mathcal{O}| = 0 \]

\[\langle e^{i(k+G) \cdot r} | \tilde{\mathcal{H}} | \tilde{\Psi}_n \rangle = \epsilon_n \langle e^{i(k+G) \cdot r} | \mathcal{O} | \tilde{\Psi}_n \rangle \]

Possible Parallelizations

- over the k-points.
- over the plane-waves → require a parallel 3dim-FFT \(^a\).
- over the bands → require a block eigensolver.

Algorithm 1 LOBPCG

Require: $\Psi^0 = \{\Psi_1^0, \ldots, \Psi_m^0\}$ close to the minimum and K a preconditioner; $P = \{P_1^{(0)}, \ldots, P_m^{(0)}\}$ is initialized to 0.

1: for $i=0,1,\ldots,\kappa$ do
2: $\Upsilon^{(i)} = \Upsilon(\Psi^{(i)})$
3: $R^{(i)} = \mathcal{H}\Psi^{(i)} - \Upsilon^{(i)} \mathcal{O}\Psi^{(i)}$
4: $W^{(i)} = KR^{(i)}$
5: The Rayleigh-Ritz method is applied within the subspace $\Xi = \{P_1^{(i)}, \ldots, P_m^{(i)}, \Psi_1^{(i)}, \ldots, \Psi_m^{(i)}, W_1^{(i)}, \ldots, W_m^{(i)}\}$
6: $\Psi^{(i+1)} = \Delta^{(i)}\Psi^{(i)} + \Lambda^{(i)}W^{(i)} + \Gamma^{(i)}P^{(i)}$
7: $P^{(i+1)} = \Lambda^{(i)}W^{(i)} + \Gamma^{(i)}P^{(i)}$
8: end for

More efficient than CG in many cases

Large scale electronic structure calculations with the LOBPCG method

Carbon in its Diamond phase, Plutonium in its alpha phase

We compare also the use of different blocksizes: blocksize=1 and blocksize=\textit{nband}

- The convergence is linear up to a higher precision for lobpcg, but blocksize=\textit{nband} yields better results
Large scale electronic structure calculations with the LOBPCG method

1. **Theoretical background**
 - The Norm-Conserving method (NC)
 - The Projector Augmented-Wave method (PAW)
 - The self-consistent loop (SCF)
 - Locally Optimal Block Preconditioned Conjugate Gradient method (LOBPCG)
 - LOBPCG method versus CG

2. **BandFFT parallelization**
 - *Implementation*

3. **BandFFT Results**
 - *Benchmarks*
 - Norm-conserving Results
 - PAW results
 - Adding k-points parallelization

4. **Tests with LOBPCGII**
 - Avoiding the 3mX3m RR
 - LobpcgII: discussion
 - LOBPCGI method versus LOBPCGII

5. **Conclusion – Prospects**
 - *Conclusion*
Large scale electronic structure calculations with the LOBPCG method

Implementation

\[\tilde{\Psi}_n(r) = \sum_G c_n(G) e^{i(k+G) \cdot r} \]

\[[\hat{n} + \hat{n}](r) \quad \text{and} \quad \rho_{ij} \quad \leftarrow \quad \{c_n(G); \epsilon_n\} \]

\[v_{\text{loc}}(r) \quad \text{and} \quad v_{n1}(r) \]

| \[\begin{bmatrix} \hat{H} - \epsilon_n \mathcal{O} \end{bmatrix} = 0 \]

| \[\langle e^{i(k+G) \cdot r} \mid \hat{H} \mid \tilde{\Psi}_n \rangle = \epsilon_n \langle e^{i(k+G) \cdot r} \mid \mathcal{O} \mid \tilde{\Psi}_n \rangle \]

In LOBPCG: blocks of size m

| \begin{bmatrix} c_{1:m}(g_{11}) & c_{1:m}(g_{12}) & \cdots & c_{1:m}(g_{1p}) \\ c_{1:m}(g_{21}) & c_{1:m}(g_{22}) & \cdots & c_{1:m}(g_{2p}) \\ \vdots & \vdots & \ddots & \vdots \\ c_{1:m}(g_{m1}) & \cdots & \cdots & c_{1:m}(g_{mp}) \end{bmatrix} |
Large scale electronic structure calculations with the LOBPCG method

Implementation

\[\tilde{\Psi}_n(\mathbf{r}) = \sum_{\mathbf{G}} c_n(\mathbf{G}) e^{i(k+\mathbf{G})\cdot \mathbf{r}} \]

\[[\hat{n} + \hat{n}](\mathbf{r}) \quad \text{and} \quad \rho_{ij} \quad \leftarrow \quad \{ c_n(\mathbf{G}); \epsilon_n \} \]

\[v_{\text{loc}}(\mathbf{r}) \quad \text{and} \quad v_{\text{n1}}(\mathbf{r}) \quad \left| \tilde{\mathcal{H}} - \epsilon_n \mathcal{O} \right| = 0 \]

\[\langle e^{i(k+\mathbf{G})\cdot \mathbf{r}} | \tilde{\mathcal{H}} | \tilde{\Psi}_n \rangle = \epsilon_n \langle e^{i(k+\mathbf{G})\cdot \mathbf{r}} | \mathcal{O} | \tilde{\Psi}_n \rangle \]

In LOBPCG: blocks of size m

\[
\begin{array}{cccc}
 c_{1:m}(g_{11}) & c_{1:m}(g_{12}) & \cdots & c_{1:m}(g_{1p}) \\
 c_{1:m}(g_{21}) & c_{1:m}(g_{22}) & \cdots & c_{1:m}(g_{2p}) \\
 \vdots & \vdots & \ddots & \vdots \\
 c_{1:m}(g_{m1}) & \cdots & \cdots & c_{1:m}(g_{mp})
\end{array}
\]
Large scale electronic structure calculations with the LOBPCG method

Implementation

\[\tilde{\Psi}_n(\mathbf{r}) = \sum_{\mathbf{G}} c_n(\mathbf{G}) e^{i(k+\mathbf{G}) \cdot \mathbf{r}} \]

\[[\hat{n} + \hat{n}](\mathbf{r}) \quad \text{and} \quad \rho_{ij} \leftarrow \{ c_n(\mathbf{G}); \epsilon_n \} \]

\[\mathbf{v}_{\text{loc}}(\mathbf{r}) \quad \text{and} \quad \mathbf{v}_{\text{n1}}(\mathbf{r}) \]

\[\langle e^{i(k+\mathbf{G}) \cdot \mathbf{r}} \mid \mathbf{H} \mid \tilde{\Psi}_n \rangle = \epsilon_n \langle e^{i(k+\mathbf{G}) \cdot \mathbf{r}} \mid \mathcal{O} \mid \tilde{\Psi}_n \rangle \]

In LOBPCG: blocks of size m

\[
\begin{array}{cccc}
c_{1:m}(g_{11}) & c_{1:m}(g_{12}) & \cdots & c_{1:m}(g_{1p}) \\
c_{1:m}(g_{21}) & c_{1:m}(g_{22}) & \cdots & c_{1:m}(g_{2p}) \\
\vdots & \vdots & \ddots & \vdots \\
c_{1:m}(g_{m1}) & \cdots & \cdots & c_{1:m}(g_{mp})
\end{array}
\]
Large scale electronic structure calculations with the LOBPCG method

Implementation

\[\tilde{\Psi}_n(r) = \sum_G c_n(G)e^{i(k+G)\cdot r} \]
\[[\hat{n} + \hat{n}](r) \quad \text{and} \quad \rho_{ij} \quad \leftarrow \quad \{c_n(G); \epsilon_n\} \]
\[v_{loc}(r) \quad \text{and} \quad v_{nl}(r) \quad |\tilde{H} - \epsilon_n O| = 0 \]
\[\langle e^{i(k+G)\cdot r} | \tilde{H} | \tilde{\Psi}_n \rangle = \epsilon_n \langle e^{i(k+G)\cdot r} | O | \tilde{\Psi}_n \rangle \]

In LOBPCG: blocks of size m

\[
\begin{pmatrix}
 c_{1:m}(g_{11}) & c_{1:m}(g_{12}) & \cdots & c_{1:m}(g_{1p}) \\
 c_{1:m}(g_{21}) & c_{1:m}(g_{22}) & \cdots & c_{1:m}(g_{2p}) \\
 \vdots & \vdots & \ddots & \vdots \\
 c_{1:m}(g_{m1}) & \cdots & \cdots & c_{1:m}(g_{mp})
\end{pmatrix}
\]
Large scale electronic structure calculations with the LOBPCG method

Implementation

\[\tilde{\Psi}_n(r) = \sum_G c_n(G) e^{i(k+G).r} \]

\[[\hat{n} + \hat{\mu}](r) \quad \text{and} \quad \rho_{ij} \leftrightarrow \{c_n(G); \epsilon_n\} \]

\[v_{\text{loc}}(r) \quad \text{and} \quad v_{n1}(r) \quad |\tilde{\mathcal{H}} - \epsilon_n \mathcal{O}| = 0 \]

\[\langle e^{i(k+G).r} | \tilde{\mathcal{H}} | \tilde{\Psi}_n \rangle = \epsilon_n \langle e^{i(k+G).r} | \mathcal{O} | \tilde{\Psi}_n \rangle \]

... which can be transposed...

\[
\begin{pmatrix}
 c_1(g_{11}) & c_1(g_{21}) & \cdots & c_1(g_{m1}) \\
 c_2(g_{11}) & c_2(g_{21}) & \cdots & c_2(g_{m1}) \\
 \vdots & \vdots & \ddots & \vdots \\
 c_m(g_{11}) & \cdots & \cdots & c_m(g_{m1})
\end{pmatrix}
\]
Large scale electronic structure calculations with the LOBPCG method

Implementation

\[\tilde{\Psi}_n(r) = \sum_G c_n(G)e^{i(k+G) \cdot r} \]

\[[\hat{n} + \hat{n}](r) \quad \text{and} \quad \rho_{ij} \left\downarrow \right\{ c_n(G); \epsilon_n \} \]

\[v_{\text{loc}}(r) \quad \text{and} \quad v_{n1}(r) \quad | \tilde{H} - \epsilon_n O | = 0 \]

\[\langle e^{i(k+G) \cdot r} | \tilde{H} | \tilde{\Psi}_n \rangle = \epsilon_n \langle e^{i(k+G) \cdot r} | O | \tilde{\Psi}_n \rangle \]

... which can be transposed...

\[
\begin{bmatrix}
c_1(g_{11}) & c_1(g_{21}) & \ldots & c_1(g_{m1}) \\
c_2(g_{11}) & c_2(g_{21}) & \ldots & c_2(g_{m1}) \\
\vdots & \vdots & \ddots & \vdots \\
c_m(g_{11}) & \ldots & \ldots & c_m(g_{m1})
\end{bmatrix}
\]
Large scale electronic structure calculations with the LOBPCG method

Implementation

\[\tilde{\Psi}_n(\mathbf{r}) = \sum_{\mathbf{G}} c_n(\mathbf{G}) e^{i(\mathbf{k} + \mathbf{G}) \cdot \mathbf{r}} \]

\[[\hat{n} + \hat{n}](\mathbf{r}) \quad \text{and} \quad \rho_{ij} \leftrightarrow \{c_n(\mathbf{G}); \epsilon_n\} \]

\[\tilde{\mathcal{H}} - \epsilon_n \mathcal{O} = 0 \]

\[\langle e^{i(\mathbf{k} + \mathbf{G}) \cdot \mathbf{r}} | \tilde{\mathcal{H}} | \tilde{\Psi}_n \rangle = \epsilon_n \langle e^{i(\mathbf{k} + \mathbf{G}) \cdot \mathbf{r}} | \mathcal{O} | \tilde{\Psi}_n \rangle \]

... which can be transposed...

\[
\begin{array}{cccc}
 c_1(g_{11}) & c_1(g_{21}) & \ldots & c_1(g_{m1}) \\
 c_2(g_{11}) & c_2(g_{21}) & \ldots & c_2(g_{m1}) \\
 \vdots & \vdots & \ddots & \vdots \\
 c_m(g_{11}) & \ldots & \ldots & c_m(g_{m1}) \\
\end{array}
\]
Large scale electronic structure calculations with the LOBPCG method

Implementation

\[\tilde{\Psi}_n(r) = \sum_G c_n(G)e^{i(k+G)\cdot r} \]

\[[\hat{n} + \hat{n}](r) \quad \text{and} \quad \rho_{ij} \quad \leftarrow \quad \{c_n(G); \epsilon_n\} \]

\[\nu_{\text{loc}}(r) \quad \text{and} \quad \nu_{n1}(r) \quad |\tilde{\mathcal{H}} - \epsilon_n\mathcal{O}| = 0 \]

\[\langle e^{i(k+G)\cdot r}|\tilde{\mathcal{H}}|\tilde{\Psi}_n \rangle = \epsilon_n \langle e^{i(k+G)\cdot r} |\mathcal{O}|\tilde{\Psi}_n \rangle \]

... which can be transposed...

\[
\begin{bmatrix}
 c_1(g_{11}) & c_1(g_{21}) & \ldots & c_1(g_{m1}) \\
 c_2(g_{11}) & c_2(g_{21}) & \ldots & c_2(g_{m1}) \\
 \vdots & \vdots & \ddots & \vdots \\
 c_m(g_{11}) & \ldots & \ldots & c_m(g_{m1})
\end{bmatrix}
\]
Large scale electronic structure calculations with the LOBPCG method

Implementation

\[\tilde{\Psi}_n(r) = \sum_G c_n(G) e^{i(k+G) \cdot r} \]

\[[\tilde{n} + \hat{n}](r) \quad \text{and} \quad \rho_{ij} \quad \leftarrow \quad \{c_n(G); \epsilon_n\} \]

\[v_{\text{loc}}(r) \quad \text{and} \quad v_{n1}(r) \quad | \tilde{\mathcal{H}} - \epsilon_n O | = 0 \]

\[\langle e^{i(k+G) \cdot r} | \tilde{\mathcal{H}} | \tilde{\Psi}_n \rangle = \epsilon_n \langle e^{i(k+G) \cdot r} | O | \tilde{\Psi}_n \rangle \]

... which can be transposed...

\[
\begin{pmatrix}
c_1(g_{11}) & c_1(g_{21}) & \ldots & c_1(g_{m1}) \\
c_2(g_{11}) & c_2(g_{21}) & \ldots & c_2(g_{m1}) \\
\vdots & \vdots & \ddots & \vdots \\
c_m(g_{11}) & \ldots & \ldots & c_m(g_{m1})
\end{pmatrix}
\]
Large scale electronic structure calculations with the LOBPCG method

Implementation

\[
\tilde{\Psi}_n(r) = \sum_G c_n(G) e^{i(k+G) \cdot r}
\]

\[
[\tilde{n} + \hat{n}](r) \quad \text{and} \quad \rho_{ij} \longleftarrow \{c_n(G); \epsilon_n\}
\]

\[
v_{\text{loc}}(r) \quad \text{and} \quad v_{\text{n1}}(r) \quad |\tilde{\mathcal{H}} - \epsilon_n \mathcal{O}| = 0
\]

\[
\langle e^{i(k+G) \cdot r} | \tilde{\mathcal{H}} | \tilde{\Psi}_n \rangle = \epsilon_n \langle e^{i(k+G) \cdot r} | \mathcal{O} | \tilde{\Psi}_n \rangle
\]

... which can be transposed...

\[
\begin{pmatrix}
 c_1(g_{11}) & c_1(g_{21}) & \cdots & c_1(g_{m1}) \\
 c_2(g_{11}) & c_2(g_{21}) & \cdots & c_2(g_{m1}) \\
 \vdots & \vdots & \ddots & \vdots \\
 c_m(g_{11}) & \cdots & \cdots & c_m(g_{m1})
\end{pmatrix}
\]
Large scale electronic structure calculations with the LOBPCG method

1. Theoretical background
 - The Norm-Conserving method (NC)
 - The Projector Augmented-Wave method (PAW)
 - The self-consistent loop (SCF)
 - Locally Optimal Block Preconditioned Conjugate Gradient method (LOBPCG)
 - LOBPCG method versus CG

2. BandFFT parallelization
 - Implementation

3. BandFFT Results
 - Benchmarks
 - Norm-conserving Results
 - PAW results
 - Adding k-points parallelization

4. Tests with LOBPCGII
 - Avoiding the 3mX3m RR
 - LobpcgII: discussion
 - LOBPCGI method versus LOBPCGII

5. Conclusion – Prospects
 - Conclusion
Large scale electronic structure calculations with the LOBPCG method

Benchmarks – Test cases

- Gold system with 108 atoms, 648 bands, 108^3 FFT grid, 1 k-point and $E_{\text{cut}}=24$ Ha.
- We stop the SCF for $\text{nstep}=15$
- A two-dimensional grid of processors with $n\text{proc}=1, 4, 18, 36, 54, 108, 162$ and 216.
- Example: for $n\text{proc}=108$, we can choose $m \times p=108 \times 1, 54 \times 2, 36 \times 3, 27 \times 4, 18 \times 6, 12 \times 9, 9 \times 12, 6 \times 18, 4 \times 27$ and 3×36
- Tests are performed on 2 supercomputers:

<table>
<thead>
<tr>
<th>Supercomputer</th>
<th>Node</th>
<th>Interconnection</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tantale (CCRT)</td>
<td>4-procs AMD OPTERON 2.4 GHz</td>
<td>Infiniband</td>
</tr>
<tr>
<td>TERA-10 (CEA/DIF)</td>
<td>Novascale 16-procs Intel Itanium</td>
<td>Quadrics</td>
</tr>
</tbody>
</table>
Large scale electronic structure calculations with the LOBPCG method

Norm-conserving Results

108 atoms, 648 bands, 108^3 FFT grid, 1 k-point and $E_{\text{cut}}=24$ Ha.

- In sequential: 90 000 sec. (with 90% in LOBPCG).
- Linear scaling up to 100 for ABINIT and 200 for LOBPCG.
Large scale electronic structure calculations with the LOBPCG method

PAW results (with 2 projectors per angular momentum)

108 atoms, 648 bands, 72^3 FFT grid, 1 k-point and $E_{\text{cut}}=12$ Ha.

- In sequential: 75 000 sec. (with 90% in LOBPCG).
- Due to non-local like and spherical terms.
Large scale electronic structure calculations with the LOBPCG method

The triple nkG parallelization (in ABINIT 5.5.x)

108 atoms, 648 bands, 108^3 FFT grid, 10 k-point and $E_{\text{cut}}=24$ Ha.
Large scale electronic structure calculations with the LOBPCG method

1. Theoretical background
 - The Norm-Conserving method (NC)
 - The Projector Augmented-Wave method (PAW)
 - The self-consistent loop (SCF)
 - Locally Optimal Block Preconditioned Conjugate Gradient method (LOBPCG)
 - LOBPCG method versus CG

2. BandFFT parallelization
 - Implementation

3. BandFFT Results
 - Benchmarks
 - Norm-conserving Results
 - PAW results
 - Adding k-points parallelization

4. Tests with LOBPCGII
 - Avoiding the 3mX3m RR
 - LobpcgII: discussion
 - LOBPCGI method versus LOBPCGII

5. Conclusion – Prospects
 - Conclusion
Large scale electronic structure calculations with the LOBPCG method

Algorithm 2 LOBPCGI

Require: $\Psi^0 = \{\Psi_1^0, \ldots, \Psi_m^0\}$ close to the minimum and K a pre-conditioner; $P = \{P_1^0, \ldots, P_m^0\}$ is initialized to 0.

1: for $i=0,1,\ldots,\kappa$ do
2: \[\Upsilon^{(i)} = \Upsilon(\Psi^{(i)}) \]
3: \[R^{(i)} = H\Psi^{(i)} - \Upsilon^{(i)}\Omega\Psi^{(i)} \]
4: \[W^{(i)} = KR^{(i)} \]
5: The Rayleigh-Ritz method is applied within each subspace $\Xi_j = \{P_1^{(i)}, \Psi_1^{(i)}, W_1^{(i)}\}$
6: \[\hat{\Psi}_j^{(i+1)} = \Delta_j^{(i)}\Psi_j^{(i)} + \Lambda_j^{(i)}W_j^{(i)} + \Gamma_j^{(i)}P_j^{(i)} \]
7: \[P_j^{(i+1)} = \Lambda_j^{(i)}W_j^{(i)} + \Gamma_j^{(i)}P_j^{(i)} \]
8: Apply RR on the subspace $\{\hat{\Psi}_1^{i+1}, \ldots, \hat{\Psi}_m^{i+1}\}$
9: end for

Computes a smaller Ritz matrix. Now the P are somewhat inconsistent with the Ψ
LobpcgII: discussion

- Eigenvalues are sometimes running away
- This is due to the lack of orthogonalization step
- To remain in the spirit of CG eigensolvers the P must be modified
- A good approximation is to impose
 \[\text{span}(\Psi_{j+1}^i, \Psi_j^i) = \text{span}(\Psi_{j+1}^i, P_{j+1}^i) \]
Large scale electronic structure calculations with the LOBPCG method

LOBPCGI vs LOBPCGII

We compare also the use of different block sizes: blocksize=1 and blocksize=nband
Large scale electronic structure calculations with the LOBPCG method

1. Theoretical background
 - The Norm-Conserving method (NC)
 - The Projector Augmented-Wave method (PAW)
 - The self-consistent loop (SCF)
 - Locally Optimal Block Preconditioned Conjugate Gradient method (LOBPCG)
 - LOBPCG method versus CG

2. BandFFT parallelization
 - Implementation

3. BandFFT Results
 - Benchmarks
 - Norm-conserving Results
 - PAW results
 - Adding k-points parallelization

4. Tests with LOBPCGII
 - Avoiding the 3mX3m RR
 - LobpcgII: discussion
 - LOBPCGII method versus LOBPCGII

5. Conclusion – Prospects
 - Conclusion
Conclusion

- LOBPCG is responsible for the superlinear behaviour and scales perfectly up to 200 processors.
- ABINIT scales linearly up to 100 processors in NC and slightly underneath in PAW.
- LOBPCG-II could yield an even greater gain in scalability, by avoiding the orthogonalization step.
- This is the object of our current studies.