Majorization-based convergence rate bounds for subspace iterations and the block Lanczos method

Merico Argentati (speaker) and Andrew Knyazev

Department of Mathematical & Statistical Sciences

University of Colorado Denver

Supported by the National Science Foundation

10th Copper Mountain Conference on Iterative Methods, 2008

April 9, 2008
Outline

- The Rayleigh–Ritz method, principal angles between subspaces \mathcal{X} and \mathcal{Y}, majorization
- Weak majorization bounds on the change in Ritz values
- Bound on principal angles between \mathcal{X} and $F\mathcal{Y}$ in terms of the principal angles between \mathcal{X} and \mathcal{Y} where F is an operator
- Subspace iteration and weak majorization bounds on Ritz values
- Convergence rate bounds for the block Lanczos method
- Conclusions
The Rayleigh–Ritz Method

- Let A be a Hermitian matrix and \mathcal{X} a subspace
- We define an operator $P_{\mathcal{X}}A|_{\mathcal{X}}$ on \mathcal{X}, where $P_{\mathcal{X}}$ is the orthogonal projection onto \mathcal{X} and $P_{\mathcal{X}}A|_{\mathcal{X}}$ denotes the restriction of $P_{\mathcal{X}}A$ to \mathcal{X}, as discussed in Parlett [1998]. The eigenvalues $\Lambda(P_{\mathcal{X}}A|_{\mathcal{X}})$ are called Ritz values.
- We have $\Lambda(P_{\mathcal{X}}A|_{\mathcal{X}}) = \Lambda(X^{H}AX)$ where X is a matrix with orthonormal columns that span \mathcal{X}
- Nonzero Ritz values are the nonzero eigenvalues of $P_{\mathcal{X}}AP_{\mathcal{X}}$
Bounding Eigenvalues

If A is a Hermitian matrix, we have Weyl’s theorem

$$\max_{j=1,...,n} |\lambda_j(A) - \lambda_j(B)| \leq \|A - B\|,$$

(1)

and by an analog of the Hoffman–Wielandt theorem, e.g. Stewart and Sun [1990], we have

$$\sqrt{\sum_{j=1}^{n} (\lambda_j(A) - \lambda_j(B))^2} \leq \|A - B\|_F$$

(2)

How do we bound Ritz values when we vary/perturb the subspace?
Changes in the Trial Subspace in the Rayleigh–Ritz Method

• We can vary a Hermitian matrix and see how the eigenvalues change.

• Analogously for a fixed Hermitian matrix, we can vary the subspace and see how the Ritz values change. If a subspace \mathcal{X} is perturbed to give rise to another subspace \mathcal{Y}, then we can ask about how to bound

$$|\Lambda(P_{\mathcal{X}}A|_{\mathcal{X}}) - \Lambda(P_{\mathcal{Y}}A|_{\mathcal{Y}})|$$

• Answer: We can prove some very flexible and useful bounds using principal angles between subspaces and majorization, also considering the case when \mathcal{X} or \mathcal{Y} may be invariant relative to A.

Principal Angles Between Subspaces

- Let subspaces \mathcal{X} and $\mathcal{Y} \subseteq \mathbb{C}^n$ with $\dim \mathcal{X} = \dim \mathcal{Y}$, and orthonormal bases given by the columns of the matrices X and Y. The principal angles between \mathcal{X} and \mathcal{Y} arranged in descending order are given by $\Theta(\mathcal{X}, \mathcal{Y}) = \Theta^\downarrow(\mathcal{X}, \mathcal{Y})$, and defined using $\cos \Theta(\mathcal{X}, \mathcal{Y}) = S^\uparrow(X^HY)$.

- Definition is symmetric: $\Theta(\mathcal{X}, \mathcal{Y}) = \Theta(\mathcal{Y}, \mathcal{X})$.

- Definition of the distance between subspaces: $\operatorname{gap}(\mathcal{X}, \mathcal{Y}) = \|P_{\mathcal{X}} - P_{\mathcal{Y}}\|_2 = \sin(\Theta_{\max}(\mathcal{X}, \mathcal{Y}))$.

Pioneering results using angles between subspaces in the framework of unitarily invariant norms and symmetric gauge functions, equivalent to majorization, appear in Davis and Kahan [1970], which introduces many of the tools that we use here.
The Geometry of Principal Angles

\[\theta_1 \geq \ldots \geq \theta_m \]

The cosines can be defined recursively for \(k = m, \ldots, 1 \) by

\[
\cos(\theta_k) = \max_{x \in \mathcal{X}} \max_{y \in \mathcal{Y}} x^T y = x_k^T y_k \text{ subject to } \|x\| = \|y\| = 1, \quad x^T x_i = 0, \quad y^T y_i = 0, \quad i = m, \ldots, k + 1.
\]
Majorization and Basic Notation

- For vector $x = [x_1, \ldots, x_n]$, we use $x^\downarrow \equiv [x_1^\downarrow, \ldots, x_n^\downarrow]$ to denote x with its elements rearranged in descending order, while $x^\uparrow \equiv [x_1^\uparrow, \ldots, x_n^\uparrow]$ denotes x with its elements rearranged in ascending order. $|x|$ denotes the vector x with the absolute value of its components.

- We say that $x \in \mathbb{R}^n$ is weakly majorized by $y \in \mathbb{R}^n$, written $x \prec_w y$, if

$$
\sum_{i=1}^{k} x_i^\downarrow \leq \sum_{i=1}^{k} y_i^\downarrow, \quad 1 \leq k \leq n, \tag{3}
$$

while x is (strongly) majorized by y, written $x \prec y$, if (3) holds together with

$$
\sum_{i=1}^{n} x_i = \sum_{i=1}^{n} y_i. \tag{4}
$$
Why is Majorization Important?

• The notion of majorization plays an important role in mathematics, statistics and economics

• The following two conditions are equivalent: \(x \prec_w y \) and
 \[\sum_{i=1}^{n} \phi(x_i) \leq \sum_{i=1}^{n} \phi(y_i) \]
 for all nondecreasing convex functions \(\phi \). This implies inequalities for unitarily invariant norms and certain \(p \)-norms

• For Hermitian matrices \(A \) and \(B \) let \(\Lambda(A) \) and \(S(A) \) be, respectively, the vector of eigenvalues and singular values (both nonincreasing), then

 \[\text{diag}(A) \prec \Lambda(A), \quad \text{(Schur’s Theorem)} \quad (5) \]

 \[\Lambda(A) - \Lambda(B) \prec \Lambda(A - B) \quad \text{and} \quad |\Lambda(A) - \Lambda(B)| \prec_w S(A - B) \quad (6) \]

See Lidskii [1950], Mirsky [1960], Marshall and Olkin [1979], Horn and Johnson [1999].
Outline

- The Rayleigh–Ritz method, principal angles between subspaces \mathcal{X} and \mathcal{Y}, majorization
- Weak majorization bounds on the change in Ritz values
- Bound on principal angles between \mathcal{X} and $F\mathcal{Y}$ in terms of the principal angles between \mathcal{X} and \mathcal{Y} where F is an operator
- Subspace iteration and weak majorization bounds on Ritz values
- Convergence rate bounds for the block Lanczos method
- Conclusions
Changes in the Trial Subspace in the Rayleigh–Ritz Method

The result of (Argentati [2003], Knyazev and Argentati [2006a]):

Theorem 1 Let A be a Hermitian matrix and let \mathcal{X} and \mathcal{Y} be subspaces with $\dim \mathcal{X} = \dim \mathcal{Y} = m$. Then

$$\max_{j=1,\ldots,m} |\lambda_j(P\mathcal{X}A|\mathcal{X}) - \lambda_j(P\mathcal{Y}A|\mathcal{Y})| \leq (\lambda_{\max} - \lambda_{\min}) \sin(\Theta_{\max}(\mathcal{X}, \mathcal{Y}))$$

where λ_{\min} and λ_{\max} are the smallest and largest eigenvalues of A.

Theorem 2 Let A be a Hermitian matrix and let \mathcal{X} and \mathcal{Y} be subspaces with $\text{dim} \mathcal{X} = \text{dim} \mathcal{Y}$, then (see Knyazev and Argentati [2006b])

$$|\Lambda((P_\mathcal{X}A)|_\mathcal{X}) - \Lambda((P_\mathcal{Y}A)|_\mathcal{Y})| \prec_w (\lambda_{\text{max}} - \lambda_{\text{min}}) \sin \Theta(\mathcal{X}, \mathcal{Y}),$$

(7)

where λ_{min} and λ_{max} are the smallest and largest eigenvalues of the A, respectively. If in addition one of the subspaces is A-invariant then (see conjecture in Argentati, Knyazev, Paige, and Panayotov [2008])

$$|\Lambda((P_\mathcal{X}A)|_\mathcal{X}) - \Lambda((P_\mathcal{Y}A)|_\mathcal{Y})| \prec_w (\lambda_{\text{max}} - \lambda_{\text{min}}) \sin^2 \Theta(\mathcal{X}, \mathcal{Y}).$$

(8)
Theorem 2 is Sharp

Consider the following example for (8) where X is A-invariant (see Argentati, Knyazev, Paige, and Panayotov [2008]). Let I be an $m \times m$ identity matrix and let $A = \begin{bmatrix} I & 0 \\ 0 & -I \end{bmatrix}$. Let Σ be a diagonal of given cosines and let Γ be the diagonal of sines, so $\Sigma^2 + \Gamma^2 = I$. Let $X = \begin{bmatrix} I \\ 0 \end{bmatrix}$, and $Y = \begin{bmatrix} \Sigma \\ \Gamma \end{bmatrix}$. Then $X^H AX = I$ and $Y^H AY = 2\Sigma^2 - I$ and

$$|\Lambda(X^H AX) - \Lambda(Y^H AY)|_\downarrow = 2[\sin^2 \Theta(X, Y)] = (\lambda_{\text{max}} - \lambda_{\text{min}})[\sin^2 \Theta(X, Y)].$$
Weak Majorization Implications of

\[|\Lambda ((P_X A)|x) - \Lambda ((P_Y A)|y)| \preceq_w (\lambda_{\text{max}} - \lambda_{\text{min}}) \sin^2 \Theta(X, Y) \]

The implications of weak majorization may not be obvious. Let \(\dim X = \dim Y = m \), and let \(\alpha_1 \geq \cdots \geq \alpha_m \) be the Ritz values of \(A \) with respect to \(X \) and \(\beta_1 \geq \cdots \geq \beta_m \) be the Ritz values of \(A \) with respect to \(Y \). Then using (8) we have

\[
\sum_{i=1}^{k} |\alpha_i - \beta_i| \leq (\lambda_{\text{max}} - \lambda_{\text{min}}) \sum_{i=1}^{k} \sin^2(\Theta_i(X, Y)), \quad k = 1, \ldots, m.
\]

For \(k = 1 \) we have

\[
\max_{j=1,\ldots,m} |\alpha_j - \beta_j| \leq (\lambda_{\text{max}} - \lambda_{\text{min}}) \sin^2(\Theta_{\text{max}}(X, Y)) = (\lambda_{\text{max}} - \lambda_{\text{min}}) \text{gap}^2(X, Y),
\]
Weak Majorization Implications (Cont.)

\[|\Lambda ((P_x A)|\mathcal{X}) - \Lambda ((P_y A)|\mathcal{Y})| \preceq_w (\lambda_{\text{max}} - \lambda_{\text{min}}) \sin^2 \Theta(\mathcal{X}, \mathcal{Y}), \]

and for \(k = m \) we obtain

\[
\sum_{i=1}^{m} |\alpha_i - \beta_i| \leq (\lambda_{\text{max}} - \lambda_{\text{min}}) \sum_{i=1}^{m} \sin^2 (\Theta_i(\mathcal{X}, \mathcal{Y}))
\]

We have in general

\[
\left(\sum_{i=1}^{m} |\alpha_i - \beta_i|^p \right)^{\frac{1}{p}} \leq (\lambda_{\text{max}} - \lambda_{\text{min}}) \left(\sum_{i=1}^{m} \sin^{2p} (\Theta_i(\mathcal{X}, \mathcal{Y})) \right)^{\frac{1}{p}}, \quad 1 \leq p < \infty.
\]
Bounding Eigenvalues (Cont.)

If A is a Hermitian matrix, we have Weyl’s theorem

$$\max_{j=1,\ldots,n} |\lambda_j(A) - \lambda_j(B)| \leq \|A - B\|,$$

and by an analog of the Hoffman–Wielandt theorem, e.g. Stewart and Sun [1990], we have

$$\sqrt{\sum_{j=1}^{n} (\lambda_j(A) - \lambda_j(B))^2} \leq \|A - B\|_F$$

Note that the above formulas are two of a large class of inequalities that follow from

$$|\Lambda(A) - \Lambda(B)| \prec_w S(A - B)$$
Matlab Example for Many Zero Angles

Let $n = 5$ and $\dim \mathcal{X} = \dim \mathcal{Y} = 4$

$$A = \text{diag}([1 \ 0.9 \ 0.7 \ 0.5 \ 0]) \quad X = \text{eye}(n, m) \quad Y = \text{orth}(\text{rand}(n, m)).$$

Then \mathcal{X} is A-invariant and

$$\Lambda ((P_X A) | \mathcal{X}) = [1.0000 \ 0.9000 \ 0.7000 \ 0.5000],$$

$$\Lambda ((P_Y A) | \mathcal{Y}) = [0.9452 \ 0.7484 \ 0.6572 \ 0.0330].$$

Then

$$|\Lambda ((P_X A) | \mathcal{X}) - \Lambda ((P_Y A) | \mathcal{Y})|_1^1 = [0.4670 \ 0.1516 \ 0.0548 \ 0.0428]$$

$$\prec_w (\lambda_{\text{max}} - \lambda_{\text{min}}) \sin^2 \Theta(\mathcal{X}, \mathcal{Y}) = [0.9513 \ 0 \ 0 \ 0].$$

Conclusion: Zero angles do not imply that $\Lambda ((P_Y A) | \mathcal{Y})$ includes eigenvalues of A.
Outline

- The Rayleigh–Ritz method, principal angles between subspaces \mathcal{X} and \mathcal{Y}, majorization

- Weak majorization bounds on the change in Ritz values

- Bound on principal angles between \mathcal{X} and $F\mathcal{Y}$ in terms of the principal angles between \mathcal{X} and \mathcal{Y} where F is an operator

- Subspace iteration and weak majorization bounds on Ritz values

- Convergence rate bounds for the block Lanczos method

- Conclusions
Subspace Iterations: FY as a Possibly Improved Approximation of X

Theorem 3 Let $\dim X = \dim Y$ and assume $\Theta(X, Y) < \pi/2$. Let F be invariant on both X and on its orthogonal complement X^\perp, and assume that $(P_X F)|_X$ is invertible. Then $\dim(FY) = \dim Y$ and

$$\tan \Theta(X, FY) \prec_w S \left(\left((P_X F)|_X \right)^{-1} \right) S \left((P_{X^\perp} F)|_{X^\perp} \right) \tan \Theta(X, Y).$$

We can also prove the stronger form

$$\log \left(\frac{\tan \Theta(X, FY)}{\tan \Theta(X, Y)} \right) \prec_w \log \left(S \left(\left((P_X F)|_X \right)^{-1} \right) S \left((P_{X^\perp} F)|_{X^\perp} \right) \right).$$
Subspace Iterations and Ritz Values

Theorem 4 Let \mathcal{X} and \mathcal{Y} be subspaces of \mathcal{H} such that $\dim \mathcal{X} = \dim \mathcal{Y}$ and $\Theta(\mathcal{X}, \mathcal{Y}) < \pi/2$. Let the operator A be Hermitian, and let \mathcal{X} be an A-invariant subspace. Let $F = f(A)$ and $f (\Lambda ((P_{\mathcal{X}} A) |_{\mathcal{X}})) \neq 0$. Then $\dim (F \mathcal{Y}) = \dim \mathcal{Y}$ and

$$|\Lambda ((P_{\mathcal{X}} A) |_{\mathcal{X}}) - \Lambda ((P_{F \mathcal{Y}} A) |_{F \mathcal{Y}})|$$

$$\preceq_w (\lambda_{\text{max}} - \lambda_{\text{min}}) \left(\frac{|f (\Lambda ((P_{\mathcal{X}} A) |_{\mathcal{X}})) |^\dagger}{|f (\Lambda ((P_{\mathcal{X}} A) |_{\mathcal{X}})) |^\dagger} \right)^2 \tan^2 \Theta(\mathcal{X}, \mathcal{Y}).$$
Subspace Iterations and Ritz Values

Example: \(f(A) = A^k \)

Let the \(A \)-invariant subspace \(X \) correspond to the contiguous set of the largest eigenvalues of \(A \). Let

\[
\Lambda ((P_X A)|_X) = [\lambda_1 \geq \ldots \geq \lambda_m] \quad \text{top } m \text{ eigenvalues of } A
\]

\[
\Lambda ((P_Y A)|_Y) = [\tilde{\lambda}_1 \geq \ldots \geq \tilde{\lambda}_m].
\]

Then \(\lambda_i \geq \tilde{\lambda}_i, \ i = 1, \ldots, m \) and

\[
\begin{bmatrix}
\lambda_1 - \tilde{\lambda}_1, \ldots, \lambda_m - \tilde{\lambda}_m
\end{bmatrix}
\]

\[
\precsim_w \left(\lambda_{\max} - \lambda_{\min} \right) \begin{bmatrix}
\left(\frac{\lambda_{m+1}}{\lambda_m} \right)^{2k} \tan^2 \theta_1(X, Y), \ldots, \left(\frac{\lambda_{2m}}{\lambda_1} \right)^{2k} \tan^2 \theta_m(X, Y)
\end{bmatrix}
\]
Outline

- The Rayleigh–Ritz method, principal angles between subspaces \mathcal{X} and \mathcal{Y}, majorization
- Weak majorization bounds on the change in Ritz values
- Bound on principal angles between \mathcal{X} and $F\mathcal{Y}$ in terms of the principal angles between \mathcal{X} and \mathcal{Y} where F is an operator
- Subspace iteration and weak majorization bounds on Ritz values
- Convergence rate bounds for the block Lanczos method
- Conclusions
Convergence Rate Bounds of the Block Lanczos Method

Theorem 5 Let \(\dim X = \dim X_0 = m \), operator \(A \) be Hermitian, and let the \(A \)-invariant subspace \(X \) correspond to the contiguous set of the largest eigenvalues of \(A \). Let \(Y = X_0 + AX_0 + \cdots + A^k X_0 \), then

\[
0 \leq \frac{\Lambda ((P_X A)|X) - \Lambda_{\dim X} ((P_Y A)|Y)}{\Lambda_{\dim X} ((P_Y A)|Y) - \lambda_{\min}} < w [\sigma_m^*, \ldots, \sigma_1^*] \tan^2 \Theta(X, X_0).
\]

where

\[
\sigma_i^* = \left| T_k \left(\frac{\lambda_{m+1} + \lambda_{\min} - 2\lambda_i}{\lambda_{m+1} - \lambda_{\min}} \right) \right|^{-2} \quad i = 1, \ldots, m,
\]

and where \(T_k \) is the \(k \)th Chebyshev polynomial of the first kind.

See, e.g., Saad [1980], Knyazev [1987].
Convergence Rate Bounds of the Block Lanczos Method (Cont.)

Here is a more concrete interpretation of Theorem 5. Let

\[
\Lambda ((P_X A)|_X) = [\lambda_1 \geq \ldots \geq \lambda_m] \quad \text{top } m \text{ eigenvalues of } A
\]

\[
\Lambda_{\text{dim}X} ((P_Y A)|_Y) = [\tilde{\lambda}_1 \geq \ldots \geq \tilde{\lambda}_m] \quad \text{top } m \text{ Ritz values of } \Lambda ((P_Y A)|_Y)
\]

Then

\[
\left[\left(\frac{\lambda_1 - \tilde{\lambda}_1}{\tilde{\lambda}_1 - \lambda_{\text{min}}} \right), \ldots, \left(\frac{\lambda_m - \tilde{\lambda}_m}{\tilde{\lambda}_m - \lambda_{\text{min}}} \right) \right] \prec_w \left[\sigma^*_m \tan^2 \theta_1(X, X_0), \ldots, \sigma^*_1 \tan^2 \theta_m(X, X_0) \right]
\]
Conclusions

• We can prove some very flexible and useful bounds for Ritz values using principal angles and majorization

• The absolute value of the difference of Ritz values for a Hermitian matrix are majorized by $\lambda_{\text{max}} - \lambda_{\text{min}}$ times the sines of the angles between the perturbed subspaces, with majorization by the squares of the sines (see conjecture in [2008]) if one of the subspaces is A-invariant

• We can characterize a possible improved approximation to X by applying a function F to Y, in terms of singular values and the tangent of principal angles

• Using this general approach we obtain a useful characterization of the eigenvalue error for the Block Lanczos Method
References

Backup Slides
We Can Replace $\lambda_{\text{max}} - \lambda_{\text{min}}$ With a Reduced Constant

- As in Knyazev and Argentati [2006a, Remark 7], the constant $\lambda_{\text{max}} - \lambda_{\text{min}}$ can be replaced with

$$\max_{x \in \mathcal{X} + \mathcal{Y}, \|x\| = 1} (x, Ax) - \min_{x \in \mathcal{X} + \mathcal{Y}, \|x\| = 1} (x, Ax),$$

which for some subspaces \mathcal{X} and \mathcal{Y} can provide a significant improvement.

- This effectively replaces A with $P_{\mathcal{X} + \mathcal{Y}} AP_{\mathcal{X} + \mathcal{Y}}$, which has the same action on \mathcal{X} and \mathcal{Y}.