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ABSTRACT

In a simulation one can often identify a random variable, Y, that is likely to be highly
correlated with a random variable of interest, X. If py = E(Y') is known then Y can be
used as a control variate to estimate ux = E(X) more efficiently than by a direct
simulation of X. We study the asymptotic properties of a method that uses Y to
potentially speed up the simulation when gy is not known. The method is effective when
iy can be efficiently estimated in an auxiliary simulation that does not involve X. We call
Y a quasi control variate. For a simulation of length ¢t > 0 time units, we invest pt units
estimating py with the auxiliary simulation, yielding Y ;. The remaining gt = (1 — p)t
units are spent on the main simulation yielding estimates (X, Yy) for (uux, pty). The two
simulations can be interleaved so they are effectively done simultaneously. For each

p € (0,1) and o € R we have a quasi control variate estimator for ux,

Xi(p,o) = Xp+a(Vy —YVy), t>0.

We find p and o that minimize the asymptotic variance parameter (AVP) of X;(p, @) in
terms of statistics that are estimated during the simulations, and then describe an easily
implemented adaptive procedure that achieves the minimum AVP. The adaptive procedure
evolves into the optimal quasi control variate procedure if it is more efficient than a direct
simulation, X; — px; otherwise it evolves into the direct simulation. Applications in
stochastic linear programming, stochastic partial differential equations (PDE’s) and
queueing theory are cited.



1 PRELIMINARIES

An experimentor wants to estimate a quantity pux by simulation. In order to speed up the
simulation the experimentor considers using a certain control variate, but finds that the
mean of the proposed control variate is unknown. It is possible to estimate the mean of the
control variate in a separate simulation, but the result will not be exact, and the time
spent estimating the control variate mean could have been spent on the direct simulation of
x. How is the experimentor to proceed?

In this paper we develop an adaptive procedure that is guaranteed to make the best of this
situation, where “best” means smallest asymptotic variance for the estimate of yx. The
adaptive procedure utilizes three simulation programs: simulation A, simulation B, and
simulation C. Simulation A is a direct simulation of uy, simulation B is a simulation of px
and a control variate, and simulation C is a direct simulation of the control variate.

In the remainder of this section we describe the three simulations in more detail and define
a quasi control variate (QCV) procedure. In section 2 we find the optimal QCV procedure
in terms of statistics that can be estimated in simulation B and C. If simulation C is too
slow, or if the correlation between the primary and control variates is too small, it is
possible that simulation A is more efficient than even the optimal QCV procedure. In
section 3 we describe an adaptive procedure that “evolves” into the optimal QCV
procedure; unless simulation A is superior, in which case it evolves into simulation A. In
section 4 we discuss some applications of QCV procedures. Section 5 summarizes our
results.

Simulation A generates a pair of stochastic processes (X;,0%(t)), t > 0, that satisfy as
t — 00,

X — px  a.s., (1.1)
o%(t) = 0% a.s., (1.2)

and
sVt (Yst — uX) = oxWa(s), s>0, (1.3)

where W4 (s) is a standard Wiener process, and “=" denotes convergence in distribution.
Setting s = 1 in (1.3) we see that for large ¢, X; is approximately a Normal random

variable with mean px and variance 0% /t. We therefore interpret 0% as a measure of the
simulation’s asymptotic efficiency. In general, we measure simulation efficiency as follows.

Definition 1.1: Suppose a simulation generates estimators Z; = (2}, Z2,...,Z™), t > 0
for p = (u1, po, - - -, bm), satisfying as t — oo,

Zy — po a.S.,

and .
sVH(Zy — p) = W(s)8Y2,

where ¥ = (3/2)2 is an m x m symmetric positive definite matrix and

W (s) = (Wi(s), Wa(s), ..., Win(s))



is a vector of independent standard Wiener processes. We call ¥ the asymptotic covariance
matriz, and its diagonal elements (02,02, ...,02) are the asymptotic variance parameters

(AVP’s) for the estimators (Z}, Z7, ..., Z™).

m

The time variable in our analysis is “real” or “CPU” time, i.e., the elapsed time on the
experimentor’s watch; and all limits are as ¢ — oco. The assumptions (1.1), (1.2) and (1.3)
are fairly mild. For example, if the experiment is a Monte Carlo simulation then

ux = E(¢) is estimated by sample averages of an i.i.d. sequence {1, ¢o, ...} of replicates
of ¢. If we define N; to be the number of samples generated by time ¢ then

X = Nt_l Z¢z
i=1

and N
2= L (N1S g2 - X2
UX()—N t Z¢z t

t i=1

satisfy (1.1), (1.2) and (1.3), as long as the variance of ¢ is finite and the times to generate
the ¢;’s form an i.i.d. sequence with finite means [1]. Note that 0% (t) — 7503, the product
of the expected time to generate ¢ and the variance of ¢. We can expect (1.1), (1.2) and
(1.3) to hold for most discrete event simulations as well, e.g., finite horizon, and
regenerative and other steady state simulations.

Simulation B also estimates ux, but it keeps track of some additional quantities in the
hope that the overhead associated with collecting them pays off in improved simulation
efficiency. It generates a vector of stochastic processes

(X0, Y5, 6% (1), 53 (1), 5xv (1)) , >0,

satisfying o
(X, Y2) = (px, py) a.s., (1.4)
ox(t) oxy(t) 0x Oxy
( v () G2(1) — Gy G a.s., (1.5)
and

~ ~2
Oxy Oy

3 ) PR 1/2
sVH Xy — px, Yor — piv] = [Wa, (5), W, (s)] ( X oxY ) , §>0, (1.6)

where Wp, (s) and Wp,(s) are independent standard Wiener processes and {5%, 5%y, 0%
are the asymptotic variance/covariance parameters as defined in definition 1.1.
In the classical method of control variates, e.g., [2], simulation B is used to construct

X=X, - %é?(ﬁ ). (1.7)

Equations (1.4) and (1.5) imply that

X't* — lx  Q.S..
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Assuming 6% > 0, equations (1.5), (1.6) and [3], problem 4.1, imply

~ ~ - 1
sx/%(X:t - /J'X) = 5\/%[Xst — px, Y — ,LLY] l _&Xzy(st) ]
G5 (st)
= (1= p)5x W(s),
where W (s) is a standard Wiener process and
=2
2 _ 9xvy

= 1.8

%57 (18)

is the (squared) asymptotic correlation coefficient for ()~(t, Yt) The AVP for )N(t* is

0oy = (1= p*)5%, (1.9)

cv

which is the lowest possible AVP for an estimator of px from simulation B. If

(1 — p?)6% < o% then simulation B estimates ux (asymptotically) more efficiently than
simulation A. Clearly 0% < 6% since simulation A is dedicated to estimating px. In the
control variate literature it is often (implicitly) assumed that 0% = 6%, so there is no
reason to consider simulation A. This assumption is valid when simulation A can be easily
turned into simulation B by keeping track of quantities that are (essentially) already there,
e.g., “internal” control variates. In that case, the expected squared errors of X, and

X (*1_ ) are approximately the same for large ¢, which means that simulation B attains the
same degree of accuracy as simulation A in a fraction (1 — g?) of the time. If the additional
overhead in simulation B is not insignificant then 6% > 0% and the speedup (if there is
any) is proportionately less, e.g., “external” control variates.

The method of control variates requires that uy is known exactly. There are many
examples where yy is unknown, but g? is (potentially) large, suggesting a potential for a
significant improvement in efficiency by using simulation B instead of A. We propose to use
simulation C in conjunction with simulation B to construct an estimator that is analogous
to (1.7) when py is unknown. Simulation C generates (Y, 0%(t)), t > 0, satisfying

Y, — uy a.s., (1.10)
ol (t) = 02 a.s., (1.11)

and
sVt (75t — ,uy) = oyWe(s), s>0, (1.12)

where W (s) is a standard Wiener process. Clearly o2 < 62 since simulation C is
dedicated to the task of estimating py, and in many cases

r2=2Y (1.13)

can be made very small. We can divide ¢ units of time between simulations B and C, and
construct an estimator

A~ ~ ~

Xt(pa OZ) = th + Oz(th — th), t> 0, (114)
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where p is the fraction of time spent executing simulation C, ¢ = 1 — p is the fraction of
time spent executing simulation B, and o € R is a constant. We call the resulting scheme a
quasi control variate (QCV) procedure. If p and « are fixed in advance and do not change
during the experiment then the QCV procedure is static.

Our goal is to find optimal experimental designs using simulations A, B and C, where the
criteria for optimality is minimizing the AVP. Of course, in some cases the optimal design
is not a QCV procedure. Even the best QCV procedure may be inferior to simulation B by
itself (using X, and ignoring Y;) if 5 is too small, or if r2 is too big. Since 0% < 6%,
simulation A is in fact optimal in those cases. In the next section we find the optimal QCV
procedure of the form (1.14) using simulations B and C. Our recommended procedure,
described in section 3, takes simulations A, B and C, and adds a simple “controlling
program” that collects statistics from the three simulations as they run, and uses the
statistics to assign CPU times to them in dynamically changing ratios. Except in the
unlikely pathological case where 0% is exactly equal to the AVP of the optimal static QCV
procedure, the resulting procedure is provably optimal in the sense that no other estimator
based on data available from simulations A, B and C yields a lower AVP.

Remark 1.1. In order to avoid trivial or pathological situations we will assume that
estimators constructed from our simulations have positive AVP’s, and all correlations are
less than unit magnitude.

Quasi control variates (by another name) were considered in [4]. The analysis of QCV
procedures in [4] relies on “cost” measures associated with simulations B and C that are
determined heuristically. The focus is on sensitivity to sample size (small sample analysis).
In [5], a strong case is made for using a biased estimate fiy for py, instead of simulation C,
in a time constrained simulation experiment where the approximation error, |y — py|, is
sufficiently small in comparison with the simulation error, | X, — jix|.

2 THE OPTIMAL STATIC QCV PROCEDURE

For fixed p € [0,1) and o € R we construct the static QCV estimator

Xt(pa Of) = th + O‘(}N/;]t - th)7

where ¢ =1 —p and (X,,Y;), s >0 and Y,, s> 0 come from simulations B and C
respectively. In this section we find p* and o* that minimize the AVP for X;(p, «). In our
analysis we assume that Wpg, (-), Wpg,(-) and W (-) are independent Wiener processes.

Remark 2.1. In general it is beneficial to make the correlation between th and filt — Y
large, so designs that induce a correlation between simulations B and C could be superior
in some cases. However, there is no obvious way to induce correlations between simulations
B and C in a systematic and predictable manner. Our analysis apparently extends without
theoretical difficulties to the case where simulations B and C are correlated, but what is
gained in generality is lost in clarity of exposition, so we will not work out the details.



From (1.6) and (1.12) the AVP for X,(p, a) is found to be
vi(p,a) = q7'6% + 200 oxy +a’(¢ oy +p oy (2.1)

as long as 0 < p < 1. If p=0 then Xt(p, a) does not converge to px unless =0 Qsince
presumably uy # 0). When p = a = 0 the estimator reduces to X;. If p =1 then X;(p, @)
does not estimate px, so this case is not relevant.

Theorem 2.1 v%(p,a), p € [0,1), a € R has a unique global minimum at (p*, a*), where

L S i s BT P> # 1 and p? > r?

(=) (=2 =7?)

T i {2+ 77 = Land 72 > 1%, (2.2
0 if ﬁ? S 7,,2,
and of = _5;(_2Y&*, where
Y
pPPA-r?)(A=p)+r(r?—1) .o 9 | = =2 2
) (/PO (1-p)—r?) if 7* 4 p* # 1 and p* > r, s
N if v + p* = 1 and 5* > 17, (2.3)
0 if 72 < 72,
Furthermore,

a) p* and o* are continuous in the variables 6%, 6xy, 6% and 0%, and
(b) p* > 0 if and only if p* > r?.

Proof: If 5? > r? we show that the Hessian matrix V?v? is positive definite, and then solve
Vv? = 0 to obtain the unique global minimum. To show that V2v? is positive definite it
suffices to verify

2,2
>0
and 0?v? 9*v? v \?
Det(V?v?) = 92 o " ( 8p8a> > 0.
We find o
=2 (g0t o) >0,
and

Det(V20?) = A[(6%6% — 0%y’ + qggfs(affﬁ + 6y’ + 25’XYpO‘)].
p°q
It remains to show the numerator in (2.4) is positive. Since p*> < 1 (see Remark 1.1) we
have

(2.4)

(6%5% — 0%y )P’ + 4oy (6%p” + 5V’ + 26xypa) > 6557 (1 = p°)p° (2.5)
which is positive, proving that V?v? is positive definite. To find the global minimum we

solve
ov?

o =q %% +2¢ *Gxya+ (q726)2/ - pfzaff) o’ =0 (2.6)



and
o
Oa
For fixed p € (0,1), solving (2.7) yields the corresponding optimal value of a,

a;,z—&)(—Y( p ) (2.8)

oy \p+ar?

=20 (q7'6% +plo¥) + 20 xy = 0. (2.7)

where 72 is given by (1.13). Substituting (2.8) for « in (2.6) and simplifying yields (2.2)
and (2.3). One can verify that the expressions (2.2b) and (2.3b) are limits of the
expressions (2.2a) and (2.3a). Since VZv? > 0, the implicit function theorem applied to
(2.6) and (2.7) implies that p* and «* are continuous functions of the remaining variables
6%, 0xv, 0% and 0% when p? > r2. By taking the limit 72 — 5% in (2.2a), (2.2b), (2.3a)
and (2.3b) it follows that p* and a* are continuous on the boundary r? = p2.

We now check that our expression (2.2) for p* takes values in the interval (0,1) when

P> > 12 Since 0 <72 <1 and 0 < p? < 1 we can consider the following four cases: (i)

p* > max(r?, 1 —r?), (i) r* < min(p?, 1 — p?), (iii) r* + p? = 1, and (iv) p* < r% Case (iv)
is trivial since (2.2¢) gives us p* = 0. Case (iii) is covered by case (iv) when p* < r?; if

P> > r? then 1/2 < p? < 1 so (2.2b) gives us 0 < p* < 1. There remains cases (i) and (ii).
In case (i) it follows that the numerator and denominator in (2.2a) are negative, and the
denominator is less than the numerator; in case (ii) the numerator and denominator are
positive and the numerator is less than the denominator.

If r2 > p* we use (2.1) and (2.8) to write

~9 ~9
2 * Ox P

vip, o) =—=11— .
(P, o) q < p+qr2>

It follows that
P _ 2

2 * ~2 P —
v(p,ap)<aX(:>0<p<1_r2. (2.9)
Thus, if r* > p* then v*(p, osy) > 6% for every p € (0,1), which implies that p* = 0, and
therefore o* = 0 as well. O

Corollary 2.1.1 The optimal QCV procedure has AVP,

~2 1— ~2
W2(pt, 07y = XL 7) P ), (2.10)
q
where .
2 _ p ~9
p* +q*7‘2
Proof: Define .
p
ﬁ - p* +q*7-2'



From (2.1) and (2.8) we write

* * 5-2 ~2 ~ /62_2ﬁ ﬁQTQ
B 78) (-7

Remark 2.2. Since simulations B and C are statistically independent we can interpret p
as the asymptotic correlation between X+, and Y-y — Yy If 72 & 0 then the QCV
procedure is “almost” a control variate procedure, which would have AVP, 6% (1 — p?).
This is consistent with (2.10) since r? =~ 0 implies that ¢* ~ 1 and p? ~ . In general, we
have p? < p? and ¢* < 1, so there is a price for not knowing jy.

Corollary 2.1.2 The following statements are equivalent:
(a) p* > 0, (It is optimal to devote some time to simulation C.)

b) v%(p*, o*) < 5% (The optimal static QCV procedure has a lower AVP than simulation
) X
B alone.

(c) r2 < p.

Proof: Theorem 2.1 shows that (a) and (c) are equivalent. Since p* and o* are the unique
optimal parameters we have v?(p*, a*) < v*(0,0) = 6% when p* > 0. If p* = 0 then (2.8)
implies that o* = 0, so (a) and (b) are equivalent. O

Figure 1 shows p* and &* (defined in (2.3)) as functions of 72 and p?. Since &* =1 in the
“control variate limit” (i.e., as 72 — 0), @* can be interpreted as the “correction factor” for
QCV estimators. From (2.10) we see that the “speedup factor” of the optimal static QCV
procedure compared to simulation B alone is ¢*(1 — p?)~" (the ratio of their AVP’s), which
is plotted as a function of 7? and p? in figure 2.

3 AN OPTIMAL DYNAMIC QCV PROCEDURE

In the classical control variate environment, the experimentor has access to simulations A
and B. It is well known that the optimal utilization of simulation B (minimum AVP) is to
form the estimator X; given by (1.7). This tactic is easy to implement. However, an
“honest” experimentor must determine that X} is more efficient than X, from simulation
A before going ahead with simulation B. Fortunately, a rough comparison can be done at
very little cost. One simple heuristic has the experimentor observing X, from simulation A
and Xf from simulation B “simultaneously” in an initial phase, until a statistical analysis
reveals that one is more efficient than the other (at, say, a 99% confidence level). From
that point on, the more efficient simulation runs. If one choice is much better than the
other, then the initial phase is short. If the choices are comparable then little is lost by
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Figure 1: p* and &* as functions of 72 and 5?

running the inferior one. Likewise, in the QCV environment the experimentor must
determine that the optimal procedure based on simulations B and C is more efficient than
simulation A before going ahead with a QCV procedure.

In this section we describe a dynamic procedure using simulations A, B and C that is no
more difficult to use than the simple heuristic for control variate experiments, and is
guaranteed to provide an estimator that has an AVP as close to optimal as the
experimentor desires (“e-optimal”). An optimal estimator has AVP

2 . 2 2(. % *
Uy —mlH(O'X,’U (p y & )),

i.e., use the optimal static QCV procedure if it is superior to simulation A; otherwise use
simulation A. The experimentor can in fact “gamble” and obtain an optimal estimator by
using a procedure even simpler than the e-optimal procedure. The simpler procedure is not

guaranteed to work if v?(p*, a*) = 0%, however one can reasonably argue that those two
quantities being precisely equal is a somewhat pathological case.

At the beginning of the simulation experiment we do not know the values of any of the
parameters that would allow us to run the optimal static QCV procedure derived in the
previous section or decide whether or not it is more efficient than simulation A. We
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Figure 2: Speedup factor as a function of 72 and p?



therefore must periodically revise our strategy based on the information from the
simulations as they run. The simulation experiment is divided into time segments, which
(without loss of generality) are one unit in duration. The nth segment begins at time
t=n, n=0,1,2,.... (We assume that one unit of time is enough so that any overhead
associated with our procedure is negligible.) At the end of the (n — 1)st segment we
construct estimates of relevant parameters based on all the simulation data obtained up till
that point, and devise a strategy for the nth segment. The strategy for the nth segment is
simply the fractions of time that will be devoted to simulations A, B and C, which we will

denote by (TA B TC) Define a;, b; and ¢; to be the CPU times devoted to simulations A,

n)»y'n’'n

B and C up to time ¢, and note that

[t] -1 L]

Z (Tfanan) < (ag, by, ¢0) < Z(Tf,Tf,TS)- (3.1)
n=0 n=0
Let \ ( ) i (b )
2 _ Oy\G ~2 Oxy (0t
Ty = = and = =22
S T 5 b5t ()

be the estimates of r? and p? based on information from simulations B and C up to time ¢,
and define

RO (=) -r2(1=1?)
( —r7) (1=} —p})

if r2 +p? # 1 and p? > r?,

D=9 1-— ﬁf if r7 +p2 =1 and p? > 1,
0 if p; <17,
and
_axy() (VAOrDO A il )) o2 52 2
5% (bt) ( 171"%)(\/ (1—r2)(1—p2)—r4p2 if et P # 1 and Pi > Ty
Qr = _oxy(b) (261 09 o 2 2
t ;(yybtt (_;%_) if r; +p; =1 and p; > r},
0 if p; <77,

to be the estimates of p* and o* from (2.2) and (2.3). Let ¢ = 1 — p;, and from (2.10)
construct the estimate of v?(p*, a*),

=2
v = ox () (1 - Lﬁf) :

P+ @ur?

At time ¢ we can estimate the AVP for X; by 0% (a;). Let
A, = o%(a) — v?
be the estimate of the difference of the two AVP’s, and define
A =% =0 (p", ")

to be the true difference. If a;, b; and ¢; each grow without bound, estimates of all the
parameters needed to decide whether X; or Xt(p*, «*) is more efficient will converge almost
surely to their exact values. On the other hand, we want to spend an asymptotically
negligible fraction of time running a suboptimal experimental design.
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We now describe our recommended QCV procedure. Let 6; € (0,

sequence satisfying

and

), i=1,2,...

3 be a

(3.2)

(3.3)

(3.4)

For example, 6; = ¢i~” satisfies (3.2), (3.3) and (3.4) for any 0 <c < 1/3 and 1/2 <~y < 1.
Assign 7 > 0, 78 > 0 and 7§ > 0 time units to simulations A, B and C in the zeroth
segment (7' + 78 + ¥ = 1, but otherwise arbitrary). Choose ¢ > 0. For n > 1, the

simulations are assigned

(1 — 26,) max(gy, 6,)

=
Il
Oq

5 g:e[(l — 26,) max(gy, O0n) —

(1 — 24,) max(pn, 6,)
¢ = 6,
8y, + 22E€[(1 — 26,) max(py, 6,) —
and
T,f‘ =1- Tf — 7',?

On]

On)

if A, >¢€
if A, < —¢ (3.5)
if —e<A,<e
if A, >¢€
if A, < —¢ (3.6)
if —e <A, <e

(3.7)

time units in the nth segment. At time ¢ we can estimate pux by using any weighted

average of X,, (from simulation A) and th + at(ffbt

For ¢t > 0 let

Qp— bi+c /=
Xf:fXat-i— —(

and let v? be the AVP for X¥.

th + at(}/;)t th)) 3

—Y,,) (from simulations B and C).

(3.8)

Remark 3.1. Both (3.5) and (3.6) linearly interpolate between the values at —e and €. If
e = 0 then the alternatives in (3.5) and (3.6) reduce to A, > 0 and A, < 0. The resulting
procedure, X}, is well defined, and in fact is arguably easier to implement than procedures
X¢, € > 0. We recommend using the estimator X? unless it is possible that A is extremely
small.

Remark 3.2. The dynamic QCV procedure can be simplified and applied to standard
control variate procedures. When puy is known we define A; = 0% (a;) — 6% (b)) (1 — p2), and

set
1-9, if A, >e¢

B =24, if A, < —e¢
Op + ”+6(1—25) if —e< A, <e¢

and 74 =1 — 7. (There is no simulation C, so ¢ = 0.)
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Theorem 3.1 If simulations A, B and C are statistically independent then for every ¢ > 0,
v? < v?+¢/8.
If A # 0 then X} is an optimal estimator, i.e., v3 = vZ.

Proof: We first show that a;, b; and ¢; each grow without bound as ¢ — co. From (3.5)
and (3.6) we have 72 > §,, — 262 and 7¢ > 6, — 262, so (3.1), (3.2) and (3.3) imply that
by — 00 a.s. and ¢; — oo a.s.. From (3.7) we have

4 > 1—(1-26,) (max(qy,, 6,) + max(py,, 6,))
> 1—(1-26,)(14+6,) =8, + 262,

so a; — 0o0. Assumptions (1.1), (1.2), (1.4), (1.5), (1.10) and (1.11) imply that r, — 7,

pr = p, 0%(a) = 0%, Xy — px, (X1, Y1) = (ux, py) and Y, — py, almost surely. From
Theorem 2.1 we conclude that p; — p* and oy — o*, and since (2.1) is continuous in p and
a, we have vZ — v?(p*, a*), so A, — A. We consider the three cases A > ¢, A < —¢ and
—e < A < € separately.

If A > € then there is almost surely an N < oo so that A,, > € for every n > N. Thus, for
n > N we have 724 < 2§, so (3.4) implies

[t]
t 2 <t2 <N+ 2% 5n> — 0. (3.9)
n=N
Write
as —
sVHXE — px) = S—;S t(Xa,, — kx)
bet + ¢ ~ ~ 1
P R — e Ta — ] [ ] (3.10)
st (077
bst + Cst

s t?c -
" atS\[( o~ Hy)

For st > N we have

st]
et _ 1 <CN + 3 (1—26,) max(pa, 6n) + om) =y as,

st st oyt
since p, — p* a.s. and §,, — 0. From Corollary 2.1.2 we know that p* > 0 when A > 0.
Using the time change theorem ([3], Theorem 17.1) along with (1.12) we conclude that
Oy
VP

Since ag — o a.s. and b“g% — 1 a.s., we apply [3], problem 4.1 and conclude

sVH(Y e, — pv) = —=Wels).

bst + Cst ofoy

v

g sVE(Ye, — piy) = We(s). (3.11)
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Likewise, from (1.6) we can show that

bst + Cst <> g 1
Tsﬂ [szt - I’I/X’ }/bst - /’LY] [ O{st ‘|
1 =2 - 3
_— 0x OXy 1
= JT (W, (5), W, (s)] ( Gxy &L ) [ o ] . (3.12)
Finally, since a; — oo, (1.1) implies that (X,,, — pux) — 0 a.s.. Thus, (3.9) yields
%s t(Xay, — px) = 0 a.s. (3.13)

Equations (3.11), (3.12), (3.13) and (3.10) together imply

VXS <) % e W) W) 75 ?g)%[;]—cj;_f We(s)

=4 v(p", )W (s),
where W (s) is a standard Wiener process. Thus, in this case v? = v?.

If A < —e then there is an N < oo so that A, < —e for every n > N. This time (3.4)
implies t~2 (b, + ¢;) — 0, which along with (1.4) and (1.10) implies that the second and
third term in (3.10) converge to zero almost surely. Also,

. 1 Lst]
St = Zlay+ S 1-26)+001) | =1 as,
st st i=N+1

so Billingsley’s time change theorem and problem 4.1 applied to the first term in (3.10)

yields
as —
S—ttS t(Xay — px) = oxWa(s),

SO
sVH(X5, — ux) = oxWal(s),

and again, v? = vZ2.
If A # 0 we have proven that v? = v? for any € > 0. Thus, if A # 0 then X} is optimal.

If —e <A <e€then

4 €—A e+ A, c (€+A
T, — e 7',? 5 and T, — 7¢ p*,
% A b +A +A
st € — st € Cst €
— = — — * d —— *.
st 2 st 2¢ 1 M Ty % 7
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Thus, the time change theorem applied to (3.10) yields

e—A
sVU(XG — pux) = ox 5 Wal(s)
e+a 0% Oxy : 1
2eq* W (), W,(5)] ( oxy 0% o
e+ A
_ * W
a UY 2€p* C(S)’
which yields
2 e—A 2 €+ A 2/ x "
Ue_ % 0-X+ %€ U(p,a).

A simple calculation shows that v? — v? is maximized when |A| = ¢/2, in which case its
value is ¢/8. O

If Z, and Z, are independent with E(Z,) = E(Z,) = ux, Var(Z;) = o7 and Var(Z,) = o3
then the minimum variance weighted average of Z; and 7 is

-2 —2
01 09
Z = + Zs.
af2+a§2 ! 0f2+0§2 2
With this in mind, it may be preferable to use
)A(te = ﬁtyat + (1 - ﬁt) (th + at(ﬁlt - ?q)) ) (314)

where )
ox (at)ay
o’ (a)ag + v (t — ay)
instead of X as a QCV estimator for px. Let 52, € > 0 be the AVP for X¢. The following
result shows that asymptotically, X; and X are equivalent.

B =

Corollary 3.1.1. If Simulations A, B and C are statistically independent then for every
e>0
02 < v? +¢/8.

If A # 0 then v3 = v?

*°

Proof: It suffices to show

2
o (at)‘? ~T 0 as (3.15)
Ox (at)at + v (t — at) t
We write
ox*(aw Lo ox(a)%(1— %) — v (1 - %)
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From the proof of Theorem 3.1 we know that if A # 0 then either % — 0 or 4t — 1 almost
surely. Thus, if A # 0 then (3.15) holds. There remains the case A = (0. Choose

0 <n < oy’ and let T be large enough so that if ¢ > T then

max(loy>(a;) — 0’|, [v;2 — 0%°|) < 1. Then for t > T,

ox’ (@)1 %) v F1 =) _ WF1-%)
o2 (ar) % + vy 2(1 — %) T o’ -
< N2
Ox —1

Since 7 is arbitrary we have shown that (3.15) holds when A =0. O

4 APPLICATIONS

We begin this section by describing a “generic” example of a simulation where a particular
type of quasi control variate improves the efficiency of the experiment. We then describe
three applications, two of which are variations on the generic example.

Generic example: Let ¢ = (¢!, 4?,...,0™) be a random vector, and let f: R™ — R be a
“well behaved” function (e.g. uniformly continuous) that is nevertheless time consuming to
evaluate. We wish to estimate = E(f(¢)). Choose ¥; € R™, j=1,2,..., M and
compute and store the values of f(v;), j=1,2,..., M. Let ¢, ¢o,... be ii.d. replicates of
¢ and define m; = argmin;c(1 5 a3/l — 9] to be the index of the element of

U = {91, 19, ..., ¥} closest to ¢;, with ties going to the choice with the smallest index.
Simulation A estimates p by straight Monte Carlo. Let /V; be the number of replicates of
f(¢;) the simulation generates up to time ¢. Then simulation A provides

—_ 1 X
X = N, i;f(@)
and
2 t 1 & 2 2
O-X(t)_ﬁ <ﬁt2f(¢z) Xt)
i=1

by
(X3, V) = — > (f(#4); f(¥ri)), (4.1)

and

(0 ) = (] ) e swar- (35 ).

i=1

where M; is the number of pairs (f(¢;), f(%x,)) simulation B generates up to time ¢.
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Simulation C estimates py and its AVP by

1 &

?t = E Z:ZI f(qﬁm) (4'2)

and

where K; is the number of replicates of f(i,,) that are generated up to time ¢. Since
{f(¥j)}, j=1,2,..., M is evaluated before the main experiment starts, there is no need
to evaluate f(-) in simulation C. Evaluating 7; involves finding the closest element of ¥ to
¢;, which has complexity at most O(M), and is therefore fast (unless M is too big). Thus,
r? is small. Also, if f is fairly smooth and W is “representative” of ¢ then f(¢;) and f(¢y,)
will be highly correlated. (A reasonable way to choose W is to generate M independent
replicates of ¢.) We therefore expect the QCV estimator (3.8) or (3.14) to be far superior
to X;.

Stochastic Linear Programs: Let A be an m x n matrix and let ¢ € R™. For b € R™, let

fb) = IIElgEI}L{CLE : Az > b, z > 0} (4.3)
be the solution of the linear program specified by A, ¢, and “right hand side”, b. We will
consider the stochastic linear program seeking

p=E(f(2)),

where ¢ = (¢!, ¢?,...,¢™)" is a random (right hand side) vector. (These techniques apply
to more general stochastic linear programs with random constraint matrices and cost
coefficients [6].) Since evaluating the linear program is time consuming, we have a variant
of our generic example. Choose a set of vectors ¥ = {t1,%s,..., 9%} as a set
representative of ¢, and evaluate f(v;), j =1,2,..., M. Let {¢1, ¢o, ...} be i.i.d. replicates
of ¢, and let m; € {1,2,..., M} be the index of the element of ¥ closest to ¢;. Then
(X;,Y;) given by (4.1) should be a highly correlated pair (if ¥ is well chosen). Simulation
C, which generates Y; given by (4.2) is very efficient since (4.3) does not have to be solved.
We can consider the QCV procedure just described as the “primal” approach to the
stochastic linear programming problem. In [6], Emsermann develops a “dual” QCV
procedure for this problem that has some clear advantages over the primal approach. Both
the primal and dual approaches reduce the AVP significantly in the cases studied because
the correlation p between f(¢;) and f(tr,) is large when W is chosen to be M ~ 20
independent replicates of ¢, and M ~ 20 is small enough so that 72 is small.

For example, the method can be applied to problems in power system reliability evaluation
[7]. Here the linear program models the power network equations and constraints; the
stochastic right hand side represents possible failures in the system. The objective is to
minimize the interruption of power supply (load curtailment). The most popular reliability
indices are ezpected power not supplied (EPNS) and loss of load probability (LOLP). In the
context of (4.3), ¢ would represent random generator and circuit outages causing overloads

16



by disrupting the flow of power. These overloads can often be eliminated by rescheduling
the system generators and f(¢) would be the resulting total minimized load curtailed.
Thus, in this case pu represents the resulting EPNS. A related power performance measure,
LOLP, is the probability of energy not being supplied and is defined as P(f(¢) > 0), so

p = E(1fg)>0)- In general the LOLP is close to zero, making it difficult to estimate
accurately, so increasing simulation efficiency is crucial in this application.

Stochastic PDE’s: Consider a partial differential equation where one or more of the
coefficient functions are not known exactly, so only statistical statements can be made
about their values. It is often reasonable to model the set of unknown coefficient functions
as a (single) random function, ¢, that matches or approximates the statistical properties of
the coefficient functions. We call the resulting equation a stochastic PDE. The solution, u,
is random too, so the goal becomes estimating p = E(®(u)), where ®(u) is a scalar
quantity of interest associated with the solution. One can estimate y by generating
independent replicates of the random coefficient functions, {¢1, @2, ...}, and then solving
(by deterministic numerical methods) the resulting sequence of PDE’s. Thus, simulation A
forms the estimator

Xi= 5 o), (1.4)

where u; is the solution of the ith equation. Since the numerical solution of a PDE can be
time consuming, (4.4) may not be an efficient estimator for u. Let (#,d(-,-)) be a metric
space for the set of unknown coefficient functions and let ¥ = {11, ..., 95} be a set of
representative elements of 7. Again, we can choose ¥ to be M independent replicates of
the random coefficient functions. We evaluate ®(u;), j =1,2,..., M, where 4, is the
solution of the jth representative equation. Let m; € {1,2,..., M} be the index that
minimizes d(¢;, v;), and define

py = E(®(iy,)).
If d(-,-) is easy to compute relative to solving the PDE then r? will be small. Thus, if ®(u;)
and ®(4,,) are well correlated then a QCV procedure will improve the efficiency of the
Monte Carlo experiment. In this application it is crucial to find a metric that will induce a
significant correlation; i.e., the map ®(u) : H — R is smooth in that metric. We point out
that this is another variant of the generic example; the random vector is now a random
function.
As an example, the equations describing the flow of a solute in a porous medium (e.g.,
some liquid contaminant in the ground) are

Oc 0 0 oc
(i) — — T | = D
ot 82}1 (UZC) 81‘1 l " 8:10]] 0 e
c=c¢ x€0D
c=c €D, t=0

where ¢ = ¢(z, t) is the concentration of the solute at location x at time ¢, D is the domain
of interest, and summation over repeated indices is implied [8]. The coefficient functions
v;(z) (“pore velocities”) are unknown functions of the medium that are modeled as time
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invariant nonstationary random fields. The initial concentration cy(z) may also be
considered random. In this context, one might be interested in the expected center of mass
of the contaminant as a function of time, or the expected time until a significant fraction of
the contaminant reaches some sensitive region.

Queueing Theory: Here, we describe a quasi (external) control variate procedure for
simulating complex queueing models, analogous to the applications described in [4] and [5].
The goal is to estimate some quantity u associated with the complex model. An external
control variate in this case typically takes the form of the analogous quantity /4 in an
analogous but simplified model, where the quantity can be computed exactly. The two
models are “synchronized”, and then “common random numbers” are used for the two
models in the hope of inducing a correlation between them, e.g., [2]. It is usually difficult
to implement external control procedures successfully in practice. There are two reasons:
First, simulating the second system adds a significant overhead to simulation B, i.e., we
could have 6% = 20%. Also, when drastic simplification of the original model is necessary
in order to compute i it becomes very difficult to keep the two simulations synchronized,
and the correlation suffers as a consequence. (Designing simulation B becomes very
difficult too.) There is very little that can be done about the first problem, but relaxing the
requirement that 4 must be known exactly can help alleviate the second problem. By
allowing a wider choice of external control models this way, one can hope to find one where
the synchronization problem is less serious, and therefore a larger correlation between the
two systems is possible. Of course since an exact expression for fi is not available the
control system becomes a quasi control system. In order for a QCV procedure to work well
in this setting, the simulation of the control model must be much more efficient than the
simulation of the primary model. If the control model is Markovian, we can use the
approzimating Markov process procedure [9], to significantly speed up its simulation, and
therefore successfully use a QCV procedure, if a good approximation for z is available. The
approximation could come from (say) heavy traffic asymptotics, which are available for a
much wider class of queueing systems than those with complete solutions, or any other
method.

To illustrate, one might choose to model a wireless phone system as a network of flow
controlled infinite server stations with Poisson arrivals and general service time
distributions. Drastic simplification of this model is necessary to obtain an exact solution
(e.g., some product form network). However, it is possible to construct heavy traffic limits
for networks of flow controlled infinite server stations with Poisson arrivals and phase—type
service times [10]. Such a system can be made very “close” to the desired model and may
therefore serve as a good control. The heavy traffic limits yield approximations that allow
the approximating Markov process procedure to be employed, making a QCV procedure
feasible.

5 SUMMARY

We assume that three simulation programs are available to an experimentor who wishes to
estimate an unknown scalar quantity of interest:
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Simulation A: A direct simulation of the quantity of interest,
Simulation B: A simulation of the quantity of interest and a “control variate”, and
Simulation C: A direct simulation of the control variate.

We measure the efficiency of a simulation by its asymptotic variance parameter (AVP),
described in Definition 1.1. The goal is to find an estimator of the quantity of interest using
simulations A, B and C that has the lowest possible AVP. The AVP for simulation A is the
benchmark for comparisons with more sophisticated estimators using simulations B and C.
The classical control variate procedure uses simulation B to estimate the quantity of
interest via equation (1.7), although it is possible that simulation A has a lower AVP and is
therefore (asymptotically) preferable. A quasi control variate (QCV) procedure also utilizes
simulation B, but requires simulation C as well since the mean of the (quasi) control
variate is unknown. The (static) QCV estimator has the form (1.14). Again, simulation A
may have a lower AVP than even the optimal QCV procedure. The crucial variables in
determining how good a QCV procedure can be are

r?, the ratio of the AVP’s for the control variate estimators in simulations B and C, given
by (1.13), and

p%, the asymptotic (squared) correlation coefficient between the primary and control
variates in simulation B, given by (1.8).

The optimal static QCV procedure is specified by
p*, the fraction of time devoted to simulation C, and
o, the weighting factor for the control variate term of the QCV estimator.

The values of p* and o* are given in Theorem 2.1. The AVP for the optimal QCV
procedure is given in Corollary 2.1.1.

In practice one must estimate p* and o, and consider the possibility that simulation A has
a lower AVP than the optimal static QCV procedure. A sufficient condition that
simulation A has a lower AVP is 5? < r2. Our recommended QCV procedure is a dynamic
procedure that “evolves” into simulation A if the AVP for simulation A is lower than the
AVP for the optimal static QCV procedure, and otherwise evolves into the optimal static
QCV procedure utilizing simulations B and C. The situation is more complicated if the
alternatives are precisely equal, i.e., A = 0, but in practice this is unlikely. The
recommended procedure is specified by (3.2) - (3.8) with € = 0. Theorem 3.1 shows that
the recommended procedure is optimal in the sense that it achieves the lowest possible
AVP for any simulation experiment utilizing simulations A, B and C as long as A # 0. If
A = 0, Theorem 3.1 shows that for any ¢ > 0 we can implement a dynamic QCV procedure
that is “e-optimal”.
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