6 Orthogonality and Least Squares

6.1 INNER PRODUCT, LENGTH, AND ORTHOGONALITY
INNER PRODUCT

- If \mathbf{u} and \mathbf{v} are vectors in \mathbb{R}^n, then we regard \mathbf{u} and \mathbf{v} as $n \times 1$ matrices.

- The transpose \mathbf{u}^T is a $1 \times n$ matrix, and the matrix product $\mathbf{u}^T \mathbf{v}$ is a 1×1 matrix, which we write as a single real number (a scalar) without brackets.

- The number $\mathbf{u}^T \mathbf{v}$ is called the inner product of \mathbf{u} and \mathbf{v}, and it is written as $\mathbf{u} \cdot \mathbf{v}$.

- The inner product is also referred to as a dot product.
INNER PRODUCT

- If \(\mathbf{u} = \begin{bmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{bmatrix} \) and \(\mathbf{v} = \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix} \),

then the inner product of \(\mathbf{u} \) and \(\mathbf{v} \) is

\[
\begin{bmatrix} u_1 & u_2 & \cdots & u_n \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix} = u_1 v_1 + u_2 v_2 + \cdots + u_n v_n.
\]
INNER PRODUCT

- **Theorem 1:** Let \(u, v, \) and \(w \) be vectors in \(\mathbb{R}^n \), and let \(c \) be a scalar. Then

 a. \(u \cdot v = v \cdot u \)

 b. \((u + v) \cdot w = u \cdot w + v \cdot w \)

 c. \((cu) \cdot v = c(\langle u \rangle v) = u (\langle c \rangle v) \)

 d. \(u \cdot u \geq 0 \), and \(u \cdot u = 0 \) if and only if \(u = 0 \)

- Properties (b) and (c) can be combined several times to produce the following useful rule:

 \((c_1 u_1 + \cdots + c_p u_p) \cdot w = c_1 (u_1 \cdot w) + \cdots + c_p (u_p \cdot w) \)
THE LENGTH OF A VECTOR

- If \(\mathbf{v} \) is in \(\mathbb{R}^n \), with entries \(v_1, \ldots, v_n \), then the square root of \(\mathbf{v} \mathbf{v}^\top \) is defined because \(\mathbf{v} \mathbf{v}^\top \) is nonnegative.

- **Definition:** The **length** (or **norm**) of \(\mathbf{v} \) is the nonnegative scalar \(\| \mathbf{v} \| \) defined by

 \[
 \| \mathbf{v} \| = \sqrt{\mathbf{v} \mathbf{v}^\top} = \sqrt{v_1^2 + v_2^2 + \cdots + v_n^2}
 \]

 and \(\| \mathbf{v} \|^2 = \mathbf{v} \mathbf{v}^\top \)

- Suppose \(\mathbf{v} \) is in \(\mathbb{R}^2 \), say, \(\mathbf{v} = \begin{bmatrix} a \\ b \end{bmatrix} \).
THE LENGTH OF A VECTOR

- If we identify \(\mathbf{v} \) with a geometric point in the plane, as usual, then \(\| \mathbf{v} \| \) coincides with the standard notion of the length of the line segment from the origin to \(\mathbf{v} \).

- This follows from the Pythagorean Theorem applied to a triangle such as the one shown in the following figure.

- For any scalar \(c \), the length \(c \mathbf{v} \) is \(|c| \) times the length of \(\mathbf{v} \). That is,

\[
\| c \mathbf{v} \| = |c| \| \mathbf{v} \|
\]
A vector whose length is 1 is called a unit vector.

If we divide a nonzero vector \(\mathbf{v} \) by its length \(\delta \) that is, multiply by \(1 / \| \mathbf{v} \| \delta \) we obtain a unit vector \(\mathbf{u} \) because the length of \(\mathbf{u} \) is \((1 / \| \mathbf{v} \| \| \mathbf{v} \|) \| \mathbf{v} \| \).

The process of creating \(\mathbf{u} \) from \(\mathbf{v} \) is sometimes called normalizing \(\mathbf{v} \), and we say that \(\mathbf{u} \) is in the same direction as \(\mathbf{v} \).
THE LENGTH OF A VECTOR

- **Example 1:** Let \(v = (1, -2, 2, 0) \). Find a unit vector \(u \) in the same direction as \(v \).

- **Solution:** First, compute the length of \(v \):

\[
\|v\|^2 = v \cdot v = (1)^2 + (-2)^2 + (2)^2 + (0)^2 = 9
\]

\[
\|v\| = \sqrt{9} = 3
\]

- Then, multiply \(v \) by \(1 / \|v\| \) to obtain

\[
u = \frac{1}{\|v\|} v = \frac{1}{3} v = \frac{1}{3} \begin{bmatrix} 1 \\ -2 \\ 2 \\ 0 \end{bmatrix} = \begin{bmatrix} 1/3 \\ -2/3 \\ 2/3 \\ 0 \end{bmatrix}
\]
DISTANCE IN \mathbb{R}^n

- To check that $\|u\| = 1$, it suffices to show that $\|u\|^2 = 1$.

$$\|u\|^2 = u \cdot u = \left(\frac{1}{3}\right)^2 + \left(-\frac{2}{3}\right) + \left(\frac{2}{3}\right)^2 + (0)^2$$

$$= \frac{1}{9} + \frac{4}{9} + \frac{4}{9} + 0 = 1$$

- **Definition:** For u and v in \mathbb{R}^n, the distance between u and v, written as $\text{dist} (u, v)$, is the length of the vector $u - v$. That is,

$$\text{dist} (u,v) = \|u - v\|$$
DISTANCE IN \mathbb{R}^n

- Example 2: Compute the distance between the vectors $u = (7,1)$ and $v = (3, 2)$.

- Solution: Calculate

 $$u - v = \begin{bmatrix} 7 \\ 1 \end{bmatrix} - \begin{bmatrix} 3 \\ 2 \end{bmatrix} = \begin{bmatrix} 4 \\ -1 \end{bmatrix}$$

 $$\|u - v\| = \sqrt{4^2 + (-1)^2} = \sqrt{17}$$

- The vectors u, v, and $u - v$ are shown in the figure on the next slide.

- When the vector $u - v$ is added to v, the result is u.
DISTANCE IN \mathbb{R}^n

Notice that the parallelogram in the above figure shows that the distance from \mathbf{u} to \mathbf{v} is the same as the distance from $\mathbf{u} - \mathbf{v}$ to $\mathbf{0}$.

The distance between \mathbf{u} and \mathbf{v} is the length of $\mathbf{u} - \mathbf{v}$.
ORTHOGONAL VECTORS

- Consider \mathbb{R}^2 or \mathbb{R}^3 and two lines through the origin determined by vectors \mathbf{u} and \mathbf{v}.
- See the figure below. The two lines shown in the figure are geometrically perpendicular if and only if the distance from \mathbf{u} to \mathbf{v} is the same as the distance from \mathbf{u} to $-\mathbf{v}$.
- This is the same as requiring the squares of the distances to be the same.
ORTHOGONAL VECTORS

- Now
\[
\left[\text{dist}(u, -v) \right]^2 = \|u - (-v)\|^2 = \|u + v\|^2
\]
\[
= (u + v)(u + v)
\]
\[
= u\cdot(u + v) + v\cdot(u + v) \quad \text{Theorem 1(b)}
\]
\[
= u\cdot u + u\cdot v + v\cdot u + v\cdot v \quad \text{Theorem 1(a), (b)}
\]
\[
= \|u\|^2 + \|v\|^2 + 2u\cdot v \quad \text{Theorem 1(a)}
\]

- The same calculations with \(v\) and \(-v\) interchanged show that
\[
\left[\text{dist}(u, v) \right]^2 = \|u\|^2 + \|v\|^2 + 2u\cdot(-v)
\]
\[
= \|u\|^2 + \|v\|^2 - 2u\cdot v
\]
ORTHOGONAL VECTORS

- The two squared distances are equal if and only if $2u \cdot v = -2u \cdot v$, which happens if and only if $u \cdot v = 0$.

- This calculation shows that when vectors u and v are identified with geometric points, the corresponding lines through the points and the origin are perpendicular if and only if $u \cdot v = 0$.

- **Definition:** Two vectors u and v in \mathbb{R}^n are orthogonal (to each other) if $u \cdot v = 0$.

- The zero vector is orthogonal to every vector in \mathbb{R}^n because $0^T v = 0$ for all v.
THE PYTHAGOREAN THEOREM

Theorem 2: Two vectors u and v are orthogonal if and only if $\|u + v\|^2 = \|u\|^2 + \|v\|^2$.

Orthogonal Complements

- If a vector z is orthogonal to every vector in a subspace W of \mathbb{R}^n, then z is said to be **orthogonal to** W.

- The set of all vectors z that are orthogonal to W is called the **orthogonal complement** of W and is denoted by W^\perp (and read as $\text{⊥}W$ perpendicular or simply $\text{⊥}W$ perp).
ORTHOGONAL COMPLEMENTS

1. A vector \mathbf{x} is in W^\perp if and only if \mathbf{x} is orthogonal to every vector in a set that spans W.

2. W^\perp is a subspace of \mathbb{F}^n.

- **Theorem 3:** Let A be an $m \times n$ matrix. The orthogonal complement of the row space of A is the null space of A, and the orthogonal complement of the column space of A is the null space of A^T: $(\text{Row } A)^\perp = \text{Nul } A$ and $(\text{Col } A)^\perp = \text{Nul } A^T$
ORTHOGONAL COMPLEMENTS

- **Proof:** The row-column rule for computing Ax shows that if x is in Nul A, then x is orthogonal to each row of A (with the rows treated as vectors in \mathbb{F}^n).

 Since the rows of A span the row space, x is orthogonal to Row A.

 Conversely, if x is orthogonal to Row A, then x is certainly orthogonal to each row of A, and hence $Ax = 0$.

 This proves the first statement of the theorem.
ORTHOGONAL COMPLEMENTS

- Since this statement is true for any matrix, it is true for A^T.

- That is, the orthogonal complement of the row space of A^T is the null space of A^T.

- This proves the second statement, because Row $A^T = \text{Col } A$.

ANGLES IN \mathbb{R}^2 AND \mathbb{R}^3 (OPTIONAL)

- If \mathbf{u} and \mathbf{v} are nonzero vectors in either \mathbb{R}^2 or \mathbb{R}^3, then there is a nice connection between their inner product and the angle θ between the two line segments from the origin to the points identified with \mathbf{u} and \mathbf{v}.

- The formula is

$$\mathbf{u} \cdot \mathbf{v} = \|\mathbf{u}\|\|\mathbf{v}\|\cos \theta \quad -----(1)$$

- To verify this formula for vectors in \mathbb{R}^2, consider the triangle shown in the figure on the next slide with sides of lengths $\|\mathbf{u}\|$, $\|\mathbf{v}\|$, and $\|\mathbf{u} - \mathbf{v}\|$.

© 2012 Pearson Education, Inc.
By the law of cosines,

\[\| \mathbf{u} - \mathbf{v} \|^2 = \| \mathbf{u} \|^2 + \| \mathbf{v} \|^2 - 2\| \mathbf{u} \|\| \mathbf{v} \| \cos \theta \]

which can be rearranged to produce the equations on the next slide.
ANGLES IN \mathbb{R}^2 AND \mathbb{R}^3 (OPTIONAL)

$\|u\| \|v\| \cos \theta = \frac{1}{2} \left[\|u\|^2 + \|v\|^2 - \|u - v\|^2 \right]$

$= \frac{1}{2} \left[u_1^2 + u_2^2 + v_1^2 + v_2^2 - (u_1 - v_1)^2 - (u_2 - v_2)^2 \right]$

$= u_1v_1 + u_2v_2$

$= u \cdot v$

- The verification for \mathbb{R}^3 is similar.
- When $n > 3$, formula (1) may be used to define the angle between two vectors in \mathbb{R}^n.
- In statistics, the value of $\cos \theta$ defined by (1) for suitable vectors u and v is called a correlation coefficient.