Factoring involves a certain amount of trial and error, which can become frustrating, especially when the leading coefficient is not 1. You might want to try a rather neat scheme that will greatly reduce the number of candidates.

We’ll demonstrate the method for the polynomial

\[4x^2 + 11x + 6 \]

Using the leading coefficient of 4 we write the pair of incomplete factors

\[(4x \quad) (4x \quad) \]

Next, multiply the coefficient of \(x^2 \) and the constant term in (1) to produce \(4 \cdot 6 = 24 \). Now find two integers whose product is 24 and whose sum is 11, the coefficient of the middle term of (1). It’s clear that 8 and 3 will do nicely, so we write

\[(4x+8)(4x+3) \]

Finally, within each parenthesis in (3) discard any common divisor. Thus \(4x+8 \) reduces to \((x+2) \) and we write

\[(x + 2)(4x + 3) \]

which is the factorization of \(4x^2 + 11x + 6 \).

Will the method always work? Yes—if you first remove all common factors in the original polynomial. That is, you must first write

\[6x^2 + 15x + 6 = 3(2x^2 + 5x + 2) \]

and apply the method to the polynomial \(2x^2 + 5x + 2 \).

(For a proof that the method works, see M. A. Autrie and J. D. Austin, “A Novel Way to Factor Quadratic Polynomials.”, The Mathematics Teacher 72 no. 2[1979].)

We’ll use the polynomial \(2x^2 – x – 6 \) of Example 7 to demonstrate the method when some of the coefficients are negative.

<table>
<thead>
<tr>
<th>Factoring (ax^2 + bx + c)</th>
<th>Example: (6x^2 + 7x - 3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1. Using the leading coefficient of (a) we write the pair of incomplete factors</td>
<td>Step 1. The lead coefficient is 6, so we write</td>
</tr>
<tr>
<td>Step 2. Multiply (a) and (c), the coefficients of (x^2) and the constant term.</td>
<td>Step 2. (a \cdot c = (6)(-3) = -18)</td>
</tr>
<tr>
<td>Step 3. Find integers whose product is (a \cdot c) and the constant term</td>
<td>Step 3. Two integers whose product is (-18) and whose sum is (7) are (9) and (-2). Then we write ((6x + 9)(6x - 2))</td>
</tr>
<tr>
<td>Step 4. Discard any common factor within each parenthesis in Step 3. The result is the desired factorization.</td>
<td>Step 4. Reducing (6x + 9) to ((2x + 3)) and (6x - 2) to ((3x - 1)) we have (6x^2 + 7x - 3 = (2x+3)(3x-1))</td>
</tr>
</tbody>
</table>