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Abstract. A weighting of the edges of a hypergraph is called
vertex-coloring if the weighted degrees of the vertices yield a proper
coloring of the graph, i.e., every edge contains at least two vertices
with different weighted degrees. In this paper we show that such
a weighting is possible from the weight set {1, 2, . . . , r + 1} for
all linear hypergraphs with maximum edge size r ≥ 4 and not
containing isolated edges. The number r + 1 is best possible for
this statement.

Further, the weight set {1, 2, 3, 4, 5} is sufficient for all hyper-
graphs with maximum edge size 3, as well as {1, 2, . . . , 5r − 5} for
all hypergraphs with maximum edge size r ≥ 4, up to some trivial
exceptions.

1. Introduction and Notation

Regular graphs have been studied in a lot of contexts, and have many
properties not shared by other graphs. One may ask what is on the
other side of the spectrum, and look for graphs which are as irregular
as possible. But what is irregular? It is an easy observation that every
graph with at least two vertices contains a pair of vertices of equal
degree, so one can not hope for graphs which are totally irregular in the
sense that all vertices have pairwise different degrees. This changes if
one considers multigraphs. In fact, by multiplying some edges, one can
make every graph totally irregular, as long as the original graph does
not contain an isolated edge or two isolated vertices. This observation
led to the definition of the irregularity strength of a graph in [3], the
minimum maximum multiplicity one has to use on a given graph.

Later, Karoński,  Luczak and Thomason [6] asked a similar question
inspired by this concept. What if we do not require all vertices to have
pairwise different degrees, but only require this difference for adjacent
vertices? In other words, we want to require that the degrees yield
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a proper vertex coloring. This question led to the so called 1-2-3-
Conjecture, stated here in the obviously analogous form using edge
weights instead of multiplicities.

Conjecture 1. For every graph G without isolated edges, there is a
weighting ρ : E(G) → {1, 2, 3}, such that the induced vertex weights
ρ(v) :=

∑
u∈N(v) ρ(uv) properly color V (G).

The 1-2-3-Conjecture is known to be true for several classes of graphs,
the best known result for general graphs is by the authors of the current
article [5].

Theorem 2. For every graph G without isolated edges, there is a
weighting ρ : E(G)→ {1, 2, 3, 4, 5}, such that the induced vertex weights
ρ(v) :=

∑
u∈N(v) ρ(uv) properly color V (G).

Shortly thereafter, a total version of the 1-2-3-Conjecture, adaptly
called the 1-2-Conjecture, was formulated by Przyby lo and Wozniak [7].

Conjecture 3. For every graph G, there is a weighting ρ : E(G) ∪
V (G) → {1, 2}, such that the induced total vertex weights w(v) :=
ρ(v) +

∑
u∈N(v) ρ(uv) properly color V (G).

Kalkowski in [4] came close to settling this conjecture.

Theorem 4. For every graph G, there are weightings ρ : E(G) →
{1, 2, 3} and ρ′ : V (G) → {1, 2} such that the induced total vertex
weights w(v) := ρ′(v) +

∑
u∈N(v) ρ(uv) properly color V (G).

One natural and promising approach for both conjectures is the use
of Alon’s Combinatorial Nullstellensatz (see [1]). In its most straight-
forward application, it would prove list versions of the conjectures if
successful, leading to the following stronger conjectures, first stated by
Bartnicky, Grytczuk and Niwczyk, and by Przyby lo and Wozniak, and
Wong and Zhu, respectively.

Conjecture 5. [2] For every graph G without isolated edges, and for
every assignment of lists of size 3 to the edges of G, there exists a
weighting ρ : E(G) → R from the lists, such that the induced vertex
weights ρ(v) :=

∑
u∈N(v) ρ(uv) properly color V (G).

Conjecture 6. [8],[10] For every graph G, and for every assignment
of lists of size 2 to the vertices and edges of G, there exists a weighting
ρ : V (G)∪E(G)→ R from the lists, such that the induced total vertex
weights w(v) := ρ(v) +

∑
u∈N(v) ρ(uv) properly color V (G).
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Conjecture 5 is open even if we allow larger lists of some fixed size
k. For Conjecture 6, the best result due to Zhu and Wong in [11]
generalizes Theorem 4.

Theorem 7. For every graph G, and for every assignment of lists of
size 2 to the vertices and of size 3 to the edges of G, there exists a
weighting ρ : V (G) ∪ E(G) → R from the lists, such that the induced
total vertex weights w(v) := ρ(v) +

∑
u∈N(v) ρ(uv) properly color V (G).

All these questions also make sense for hypergraphs. Note that it
is easy to construct totally irregular hypergraphs, so the irregularity
strength of a hypergraph may actually be 1 in certain cases. In this
manuscript, we want to first consider Conjecture 1 for hypergraphs.
In Section 4, we will turn to Conjecture 6, and extend Theorem 7 to
hypergraphs.

To start, we have to decide what we mean by a proper vertex coloring
of a hypergraph as there are differing notions. We will consider the
weakest notion and call a hypergraph properly colored if it does not
contain a monochromatic edge, i.e. an edge containing only vertices
from one color class.

Next, we have to classify all hypergraphs which do not allow a vertex
coloring edge weighting at all. What is the analogon of an isolated edge
in the graph case? We will call a set of vertices of any cardinality twin
set if the vertices in the set are contained in the exact same set of edges.
With this notion, it is easy to verify that the only obstacle is an edge
consisting of a twin set. In the absence of such edges, a vertex coloring
edge weighting with integer weights is always possible. So we will ask
for such graphs, what is the minimum maximum edge weight we have
to use?

Going from graphs to hypergraphs, one discovers several important
classes of hypergraphs invisible in the graph case, we will consider
three special classes. A hypergraph is called k-uniform if all its edges
have size k. If any two edges in a hypergraph intersect in at most one
vertex, we call the hypergraph linear (this property is also called simple
in other places). Note that graphs are exactly the 2-uniform linear
hypergraphs. A hypergraph is called bipartite if it allows a proper 2-
coloring. In general, for the ease of notation we allow multiple edges
in our hypergraphs.

Starting with a hypergraph H with vertex set V (H) and edge set
E(H) and a vertex v ∈ V (H), we define the hypergraph H − v (the
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deletion of v) as the hypergraph with

V (H − v) = V (H) \ {v},
E(H − v) = {e \ {v} : e ∈ E(H)}.

In other words, we delete v from every edge, and we keep the resulting
edges.

On the other hand, for X ⊆ V (H), we may consider the induced
hypergraph H[X] with

V (H[X]) = X,

E(H[X]) = {e ∈ E(H) : e ⊆ X}.
This time, we only allow edges completely contained in the smaller
vertex set.

In the next section we provide some hypergraphs giving lower bounds
for a number replacing the 3 in the 1-2-3-Conjecture. In particular, we
show that the statement of the 1-2-3-Conjecture can not be true for
general hypergraphs. In fact, it would fail even for linear bipartite
hypergraphs.

In the third section, we present the main results of the paper—upper
bounds for the question. We will get a bound for linear hypergraphs
depending linearly on the size r of the largest edge, which matches our
lower bound as long as r ≥ 4. For non-linear hypergraphs our bound
is weaker, but still linear.

2. Lower Bounds

Let F be any hypergraph with vertex set V (F ) and edge set E(F ).
From this, we create another hypergraph H as follows. Let V (H)
consist of the vertex-edge incidences in F , i.e., pairs (v, e) where v ∈
V (F ), e ∈ E(F ) and v ∈ e. Let

E1(H) =
⋃

v∈V (F )

{(v, e) ∈ V (H) : e ∈ E(F )},

E2(H) =
⋃

e∈E(F )

{(v, e) ∈ V (H) : v ∈ V (F )},

E(H) = E1(H) ∪ E2(H).

With this construction, H is linear and 2-regular, the largest edge in
E1(H) has size equal to the maximum degree in F , and the largest edge
in E2(H) has size equal to the largest edge in F . As H does not contain
any odd cycles, H is bipartite: start with any vertex (v, e) ∈ V (H),
and partition the remaining vertices in the same component by the
parity of their distance to (v, e). Further, if F has chromatic number
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χ(F ), then V (H) can not be colored properly by the induced vertex
weights from a weighting ρ : E(H) → {1, 2, . . . , χ(F ) − 1}. We can
see this as follows. Suppose there was such a weighting. For h1 =
{(v, e1), (v, e2), . . . , (v, er)} ∈ E1(H), we write shorter ρ(v) = ρ(h1),
and similarly for h2 = {(v1, e), (v2, e), . . . , (vs, e)} ∈ E2(H), we write
shorter ρ(e) = ρ(h2). Then the induced vertex weight of a vertex is

ρ((v, e)) = ρ(v) + ρ(e).

Thus, the edge h2 from above is monochromatic if and only if all the
ρ(vi) are the same. If ρ induces a proper coloring on the vertices of H,
then ρ has to be a proper coloring on the vertices of F , a contradiction.

This construction gives us several lower bounds. If we start with a
complete graph on r + 1 vertices, we obtain a hypergraph with maxi-
mum edge size r, which needs a weight set of at least {1, 2, . . . , r + 1}
on the edges to properly color the vertices. Starting with any other r-
regular graph with chromatic number r, we obtain a hypergraph with
maximum edge size r, which needs a weight set of at least {1, 2, . . . , r}
on the edges to properly color the vertices.

If we start with the Fano plane (or any other 3-regular 3-uniform non-
bipartite hypergraph), we obtain a 2-regular 3-uniform hypergraph,
which needs a weight set of at least {1, 2, 3} on the edges to properly
color the vertices.

On the other hand, this construction cannot give us non-trivial ex-
amples for r-unform hypergraphs with r ≥ 4. Thomassen shows in [9]
that all r-uniform r-regular hypergraphs are bipartite for r ≥ 4, leaving
open the possibility of a vertex coloring edge weighting from the set
{1, 2}.

3. Upper Bounds

For r ≥ 4 and linear hypergraphs, we show that the bound of r + 1
we got in the last section is in fact best possible. Notice that for linear
hypergraphs without multiple edges, edges consisting of a twin set are
exactly isolated edges and edges of size at most 1.

Theorem 8. For every linear hypergraph H with edges of order at
most r ≥ 2, and no edge consisting of a twin set, there is a weighting
ρ : E(H) → {1, 2, . . . ,max{5, r + 1}}, such that the induced vertex
weights ρ(v) :=

∑
e3v ρ(e) properly color V (H).

Proof. We prove the statement by induction on n = |V (H)|. In fact,
we will prove a slightly stronger statement to make the induction work.
The statement is stronger because we can pick ρ′ to be constant:
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For every linear hypergraph H with all edges of order between 2 and
r ≥ 2, and without isolated edges, and for every weighting of the vertices
ρ′ : V (H) → N, there is a weighting ρ : E(H) → {1, 2, . . . ,max{5, r +
1}}, such that the induced vertex weights ρ(v) := ρ′(v) +

∑
e3v ρ(e)

properly color V (H).

The statement is easy for n = 3, so assume that n ≥ 4. We may
assume that every vertex lies in an edge of size 2. Otherwise, pick
a vertex v which is in no edge of size 2, such that the degree of v
is minimal. Then the hypergraph H − v is linear and contains no
isolated edges: if the removal of v had created an isolated edge, then
another vertex in that edge would have been chosen instead of v by the
minimality of the degree of v. Any edge weighting inducing a proper
coloring on H − v then induces a proper coloring on H as well.

The main idea of the proof is as follows. We order the vertices in
a specific ordering and then only consider an associated graph on the
same vertex set, and all edges consisting of the first two vertices in
each edge of H. Then we proceed very similar to the proof in [5] to
weight these edges respecting the order of the vertices, guaranteeing
that in the end, the first two vertices of each edge in H have different
weighted degrees. Minor short comings we can fix in the end. The
main difficulty in this approach lies in the fact that in the proof for
graphs we must pick a vertex ordering with specific properties, but as
the associated graph of the hypergraph depends on the ordering of the
vertices, we can not change this vertex ordering after restricting our
view to the associated graph. To circumvent this problem, we very
carefully pick the ordering such that the resulting associated graph
already has properties very close to what we need to make the graph
process work without reordering.

In this spirit, for any ordering π of the vertices, define E2 to be the
set of edges of size 2, and let Eπ be the set of pairs of vertices appearing
first and second in π in an edge of size at least 3 in H. Now let us find
a suitable ordering π.

If H contains a vertex incident to at least two edges in E2, make such
a vertex the last vertex vn, and skip forward to next paragraph of this
construction. If H contains no such vertex, then E2 is a perfect match-
ing. As H is linear, every edge of size at least 3 will share at most one
vertex with each edge in this matching. Find a hyperedge h of minimal
size 3 ≤ t ≤ n

2
, and choose π such that h = {vn, vn−2, . . . , vn−2t+2}, and

vn−2ivn−2i−1 ∈ E2 for 0 ≤ i ≤ t− 1.
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Then, successively for i ≥ 1 or i ≥ 2t, respectively, let vn−i be a ver-
tex not in {vn−i+1, . . . , vn} with an edge in E2∪Eπ into {vn−i+1, . . . , vn},
as long as such a vertex exists. Note that at this point, π is determined
sufficiently to decide if there is an edge in Eπ into {vn−i+1, . . . , vn}.
If we arrive at v1 this way, π is determined. If the process stops be-
fore, say after assigning i labels, delete the previously ordered vertices
{vn−i+1, . . . , vn} from H to form a subhypergraph H ′ on n′ = n − i
vertices. Clearly, H ′ contains no edges of size 1. As H contains no
twin set of size 2, H ′ contains no twin set of size 2 either, and therefore
no isolated edges. By induction, we can find a vertex coloring edge
weighting on H ′. Similarly, let H ′′ be the connected hypergraph in-
duced on {vn−i+1, . . . , vn}. Add the weights of edges intersecting both
V (H ′) and V (H ′′) which we computed in the weighting of H ′ to the
respective vertex weights in H ′′, and use induction to weight the edges
in H ′′, finishing the proof. Thus, we may assume in the following that
π is completely determined, and that the graph G = Gπ with edge set
E2 ∪ Eπ is connected up to possibly a few isolated edges in the end
of the ordering; in the case that E2 is a perfect matching, the edges
vn−2ivn−2i−1 are isolated for 0 ≤ i ≤ t − 3. The component of G with
more than one edge is ordered in a way that every vertex but the last
vertex in the component has a neighbor later in the order, and the last
vertex in the component has degree at least 2.

Now we weight very similarly to the proof in [5], we repeat large
parts of this proof here so that this article is self contained. When we
assign a weight to an edge in G, we are assigning it at the same time
to the edge in H that corresponds to the edge in G.

Let G[{v1, . . . , vs}] be the first component of G, where s = n or
s = n−2t+4. We start by assigning the provisional weight ρ(e) = 3 to
every edge and adjust it at most twice while going through all vertices
in order—once when we are considering the first vertex in the edge,
and once when we consider the second vertex. To every vertex vi with
i < s, we will assign a set of two colors W (vi) = {w(vi), w(vi) + 2}
with w(vi) ∈ {0, 1} mod 4, so that for every edge vjvi ∈ E(G) with
1 ≤ j < i, we have W (vj) ∩W (vi) = ∅, and we will guarantee that
ρ(vi) =

∑
vi∈e∈E(H) ρ(h) ∈ W (vi). Finally we will adjust the weights of

the edges incident to vs in G to make sure that ρ(vs) is different from
ρ(vi) for all vi ∈ NG(vs).

To this end, let ρ(v1) = ρ′(v1) + 3dG(v1), and pick the set W (v1) =
{w(v1), w(v1) + 2} so that ρ(v1) ∈ W (v1) and w(v1) ∈ {0, 1} mod 4.
Let 2 ≤ k ≤ n− 1 and assume that we have picked W (vi) for all i < k
and
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• ρ(vi) ∈ W (vi) for i < k,
• ρ(vkvj) = 3 for all edges in G with j > k, and
• if ρ(vivk) 6= 3 for some edge in G with i < k, then ρ(vivk) = 2

and ρ(vi) = w(vi) or ρ(vivk) = 4 and ρ(vi) = w(vi) + 2.

If vivk ∈ E(G) for some i < k we can either add or subtract 2 to
ρ(vivk) keeping ρ(vi) ∈ W (vi). If vk has d such neighbors, this gives us
a total of d + 1 choices (all of the same parity) for ρ(vk). In addition
to this we will allow to alter the weight ρ(vkvj) by 1, where j > k is
smallest such that vkvj ∈ E(G). This way, ρ(vk) can take all values in
an interval [a, a + 2d + 2]. We want to adjust the weights and assign
w(vk) so that

(1) ρ(vi) ∈ W (vi) for 1 ≤ i ≤ k,
(2) w(vi) 6= w(vk) for vivk ∈ E(G) with i < k, and
(3) either ρ(vk) = w(vk) and ρ(vkvj) ∈ {2, 3} or ρ(vk) = w(vk) + 2

and ρ(vkvj) ∈ {3, 4}.

Condition (2) can block at most 2d values in [a, a+ 2d+ 2], and condi-
tion (3) can block only the values a and a+ 2d+ 2 (for all other values
ρ(vk) with ρ(vkvj) 6= 3, we have the choice between ρ(vkvj) = 2 and
ρ(vkvj) = 4). At least one value remains open for ρ(vk).

This way, we can assign the sets W (vk) step by step for all k ≤ s− 1
without conflict. Note that the first time ρ(vk) may get changed by an
adjustment of an edge vkvi for i > k is when i = j, so we don’t run
into problems with edges weighted 2 or 4.

As the final step, we have to find an open weight for vs. This time, we
don’t have an extra edge vsvj to work with, but we don’t have to worry
about later vertices. If vivs ∈ E for some i < s we can again either
add or subtract 2 to ρ(vivs) keeping ρ(vi) ∈ W (vi). These possible
adjustments give a total of dG(vs) + 1 ≥ 3 options (all of the same
parity) for ρ(vs). Hence if the smallest such option a has a ∈ {2, 3}
mod 4, then picking the lower possible weight on each edge incident
to vs gives a proper coloring of the vertices. If a ∈ {0, 1} mod 4 and
there is a vi ∈ N(vs) with w(vi) 6= a, then picking the higher weight
on vivs and the lower weight on all other edges gives ρ(vs) = a + 2
in a proper coloring. Finally, if a ∈ {0, 1} mod 4 and w(vi) = a for
all vi ∈ N(vs), picking the higher weight on at least two edges gives a
proper coloring.

If s = n, then this finalizes the weighting of the edges in this compo-
nent. Note that in this case, we have only used edge weights from the
set {1, 2, . . . , 5}, and we have not used that H is linear in this part of
the proof.
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If s < n, we have to make sure that in addition to G[{v1, . . . , vs}],
the following isolated edges are also colored properly by the weighting.
By our construction, there are t − 2 of them. For this, consider the
edge h = {vn, vn−2, . . . , vn−2t+2} again. We will now change the weight
of h to make the coloring proper on the t edges from E2 intersecting h.
Note that h is colored properly no matter to which value we change its
weight, as this affects all its vertices the same way, and ρ(vn−2t+2) 6=
ρ(vn−2t+4) from the previous argument. As we have r+1 ≥ t+1 choices
for the weight of h, this can easily be done. For the case t = 3, we
have at least 5 choices for h, so on top of a proper coloring of the edges
just mentioned, we can also make sure that the weight of vs−2 and vs−1
is different. Note that this may result in improper colorings of some
edges in Eπ, which will be corrected next.

As E2 is a matching, and H is linear, and since t was chosen minimal,
every edge other than h in H of size greater than 2, yielding an edge in
G incident to vs or vs−2 must contain at least t− 2 of the t− 1 vertices
in {vs+1, vs+3, . . . , vn−1}. Therefore, if t = 3, there are at most 3 edges
in Eπ incident to {vs−2, vs} other than vs−2vs, coming from edges in H
containing {vs−2, vs+1}, {vs−2, vs+3} and {vs, vs+3}, respecively. Each
such edge must contain at least one of these three pairs of vertices, and
no two such edges can contain the same pair by linearity.

If t = 4, there are at most 2 edges in Eπ incident to {vs−2, vs} other
than vs−2vs, one of them containing vs−2 and the other containing vs,
as any two such edges in H share a vertex in {vs+1, vs+3, vs+5}. If
t ≥ 5, there is at most one edge in Eπ incident to {vs−2, vs} other
than vs−2vs, as any two such edges in H would share two vertices in
{vs+1, vs+3, vs+5, vs+7}. By changing the weights of vs+1vs+2, . . . vn−1vn,
we can make every such edge proper in H. Note that only in the case
t = 3 there can be such an edge in H with no vertex in {vs+1, . . . vn},
and this edge contains vs−2 and vs−1, for which we ensured different
weights when we chose the final weight for h. This finishes the proof.

�

For r = 3, we can get rid of the linearity condition, by being more
careful in the last step of the proof.

Theorem 9. For every hypergraph H with all edges of order at most 3,
and no edge consisting of a twin set, there is a weighting ρ : E(H) →
{1, 2, . . . , 5}, such that the induced vertex weights ρ(v) :=

∑
e3v ρ(e)

properly color V (H).
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Proof. The proof is the same as for Theorem 8, only the case where
E2 is a matching is treated differently. So let us assume that E2 is a
matching.

Let E1(H) ⊆ E(H) be the set of edges in H which contain an edge
of E2, and let E0(H) = E(H) \ E1(H).

If E0(H) = ∅, then the proper weighting is easy. Changing the weight
of an edge in E1(H) does not impact the properness of the coloring of
the contained edge in E(G). As every edge in E(G) has an intersection
of exactly one vertex with at least one 3-edge, we can greedily make
all edges in E2 properly colored by changing the weights of the 3-edges
only. Since all 3-edges contain 2-edges, this in turn makes the coloring
of every 3-edge proper.

So there exists a 3-edge e ∈ E0(H). Order the vertices such that
e = {vn−4, vn−2, vn}, and such that vn−5vn−4, vn−3vn−2, vn−1, vn ∈ E2.
Let d1 be the number of edges in E0(H) containing both vn−2 and vn−1,
and let d2 be the number of edges in E0(H) containing both vn−2 and
vn. We may assume that e and the ordering of the vertices was chosen
such that the sum d1 + d2 is maximized, and d2 ≥ d1.

Now continue the reordering process as before until there are no more
vertices with forward edges into the current component. Again, if this
process stops before we reach v1, we can use induction to complete the
weighting, so we may assume that we can complete π this way on the
first try.

If there is an edge {vn−2, vn−1, vn} ∈ E(H), we may delete this edge
and pretend that we are in the same case, as this edge will be colored
properly in the end due to the fact that vn−1vn will be colored properly.

Consider first the case that d1 = 0 and d2 = 1. Notice that in this
case, e is the only edge containing vn−4 and a vertex later in the order.
Otherwise, we could change the order of the last three edges in E2 such
that d1 + d2 ≥ 2, contradicting the maximimality of d1 + d2. Similarly,
there can be at most one edge e′ in E0(H) containing vn−3 and a vertex
in {vn−1, vn}, and if e′ exists, it contains vn−3 and vn−1. We now run
the weighting algorithm vertex by vertex until we have dealt with vn−5.
Next, we adjust the weight of e to make all of vn−5vn−4, vn−3vn−2
and vn−1vn properly colored. Finally, we adjust the weight of vn−1vn
to make e and e′ properly colored, finishing this case. Notice that
adjusting the weights of e and vn−1vn does not affect the properness
of the edges considered up to vn−5. Further, every edge in E1(H)
not previously considered contains either vn−3vn−2 or vn−1vn and is
therefore properly colored now.

It remains to consider the case that d1+d2 ≥ 2. We run the weighting
algorithm until we reach vn−2. Now there are 2 weight options for each
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of the d1 + d2 edges incident to vn−2 other than vn−3vn−2, where d1 of
these choices affect the weight of vn−1, and d2 of these choices affect
the weight of vn. If we pick the values of these edges such that in the
end, ρ(vn−2) /∈ {ρ(vn−3), ρ(vn−1), ρ(vn)}, and ρ(vn−1) 6= ρ(vn), then the
induced weighting properly colors H.

To this end, start with a weighting always using the smaller of the
two options on the d1 + d2 edges. By switching up to two of these
edges (one of them being e) to the higher option, we can change
the pair (ρ(vn−2) − ρ(vn−3), ρ(vn) − ρ(vn−1)) by {(0, 0), (2, 2), (4, 4)}
or {(0, 0), (2, 2), (2,−2), (4, 0)} depending on the choice of the second
edge. Thus, we have a choice which will make both ρ(vn−2) 6= ρ(vn−3)
and ρ(vn) 6= ρ(vn−1). Finally, we can adjust the weight of vn−1vn to
achieve ρ(vn−2) 6= ρ(vn−1) and ρ(vn−2) 6= ρ(vn). �

For general (non-linear) hypergraphs, we have the following bound.

Theorem 10. For every hypergraph H with all edges of order between
2 and r, and no edge consisting of a twin set, there is a weighting
ρ : E(H) → {1, 2, . . . , 5r − 5}, such that the induced vertex weights
ρ(v) :=

∑
e3v ρ(e) properly color V (H).

Proof. Again, the proof follows similar lines as the proof for Theorem 8.
But since we have trouble with the isolated edges in Gπ which may
appear, we consider these edges first, and later make sure that these
edges do not become monochromatic.

We start by finding a similar ordering π as above. In the case that
two edges in E2 intersect, we use the ordering from above. If we do
not reach v1 this way on the first try, we can again use induction to
show the existence of the weighting in the theorem statement. If we
do reach v1, we will find a weighting ρ : E(H)→ {1, 2, 3, 4, 5}.

In the case that E2 is a matching, we can not guarantee the existence
of a hyperedge h of the form described above. Instead, we will use a
hyperedge h which intersects some edge in E2 in exactly one vertex,
and, given that constraint, intersects the minimal number of edges in E2

(say a total of t intersected edges). Now, as above, put the edges in E2

intersecting h last in the ordering vn−1vn, vn−3vn−2, . . . , vn−2t+1vn−2t+2

with {vn−2t+2, vn−2t+4, . . . , vn} ⊆ h and v1, v2, . . . , vn−2t+1 /∈ h. Again,
extend this component backwards as far as possible, guaranteeing that
every vertex has a neighbor in Gπ later in the ordering.

If this process stops before we reach v1, we can not use the same
inductive argument as before—the reasons will become clear very soon.
Instead, we delete all previously ordered vertices and continue with the
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remaining hypergraph until all vertices are in order, resulting in more
than one component with more than two vertices.

Now give every edge a preliminary weight of 2r−1. Next, we change
the weight of some edges in a way that all edges in E2 intersecting h
other than possibly vn−2t+1vn−2t+2 have two weights on their vertices
which are different modulo r − 1. In the final step we will only adjust
weights of edges by multiples of r−1, and in this way these preprocessed
edges can never become monochromatic.

So for this, let E∗ contain all edges in E2 consisting of the last two
vertices of a component of G, unless that component ends with a vertex
with at least two different neighbors in G. As none of these edges
contains a twin set of size at least 2, for every f ∈ E∗ there exists an
edge ef ∈ E(H) containing exactly one of the two vertices of f . Every
edge e ∈ E(H) can have a unique intersection with at most r−2 edges
f ∈ E∗: If e intersects r or r − 1 different edges in E2 uniquely, then
e does not fully contain an edge in E2, and so the first two vertices of
e are not in E∗. Thus, we can greedily add the lowest suitable values
from {0, . . . , r − 2} to the weights of the edges ef one-by-one, making
the vertex weights in each edge f ∈ E∗ different modulo r − 1.

We proceed very similarly as above. Instead of adjusting edge weights
by {−2,−1, 0, 1, 2}, we adjust them by {−2(r − 1),−(r − 1), 0, (r −
1), 2(r−1)}. Since we preprocessed the edges in E∗, these adjustments
will never make te edges in E∗ monochromatic. Again, by induction it
is enough to look at one large component of G now, say the last.

We stop the algorithm after adjusting the edges around vn−2t+2. Note
that the biggest change required on h at this step is r − 1, so h has
weight at most (2r − 1) + (r − 2) + (r − 1) = 4r − 4. The edges in
E∗ are properly colored due to the preprocessing, all other edges other
than h are properly colored due to the algorithm. To make h properly
colored, we can adjust vn−1vn, which does not affect the properness of
any other edge at this point.

After the algorithm runs, every edge has weight at least (2r − 1) −
2(r− 1) = 1 and at most (2r− 1) + (r− 2) + 2(r− 1) = 5r− 5, proving
the theorem. �

4. Total List Colorings

In this section, we generalize Theorems 4 and 7 to hypergraphs.

Theorem 11. For every hypergraph H without edges of size 0 or 1,
there are weightings ρ : E(G) → {1, 2, 3} and ρ′ : V (G) → {1, 2} such
that the induced total vertex weights w(v) := ρ′(v) +

∑
e3v ρ(e) properly

color V (H).



THE 1-2-3 CONJECTURE FOR HYPERGRAPHS 13

We will not present the proof here, as the statement is implied by
the list version.

Theorem 12. For every hypergraph H without edges of size 0 and 1,
and for every assignment of lists of size 2 to the vertices and of size 3 to
the edges of G, there exists a weighting ρ : V (G)∪E(G)→ R from the
lists, such that the induced total vertex weights w(v) := ρ(v)+

∑
e3v ρ(e)

properly color V (G).

Proof. The proof is an adaptation of the proof of Theorem 7 to hyper-
graphs, using some ideas from our previous proofs. Order the vertices
in some order. For every edge e ∈ E(H), let ue, ve ∈ e be the first two
vertices in the edge. We will show the stronger statement, that we can
find a weighting such that w(ue) 6= w(ve) for every edge e ∈ E(H). We
may assume that {ue, ve} 6= {ue′ , ve′} for any pair of edges e, e′ ∈ E(H).
Otherwise, pick a weight from the list of e′, and add it to the lists of
all vertices in e′. If we can now find a coloring weighting in the Hyper-
graph H − e′ from the new lists, the corresponding weighting in H will
also induce a proper coloring.

Now consider the polynomial

φ(ρ) =
∏

e∈E(H)

(w(ue)− w(ve)).

Note that non-zeros of φ correspond exactly to total weightings of H
with w(ue) 6= w(ve) for every edge e ∈ E(H). Let n = |V (H)|, m =
|E(H)|, and let AH be an m × (m + n) matrix, where the rows are
labeled with the elements of E(H), the columns are labeled with the
elements of E(H) ∪ V (H), and

AH(e, z) =


1, if z ∈ V (H) and z ∈ e,
1, if z ∈ E(H) and ue ∈ z, ve /∈ z,
−1, if z ∈ E(H) and ve ∈ z, ue /∈ z,
0, otherwise.

Let B be an m × m matrix consisting of columns of AH , such that
every column corresponding to a vertex of H appears at most once, and
every column corresponding to an edge of H appears at most twice.
Then the permanent per(B) equals a coefficient of a maximum degree
monomial in φ. By a standard application of Alon’s Combinatorial
Nullstellensatz, there exists a non-zero of φ (and thus a proper coloring
by total vertex weights from the lists) from any given list assignment
with vertex lists of size two and edge lists of size three, if we can find
such a matrix B with per(B) 6= 0.
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We will find such a B by induction on n. For n = 0, the statement
is trivial as by definition, the permanent of a 0 × 0 matrix is 1. For
n ≥ 1, let u ∈ V (H) be the first vertex in the order, and consider
the hypergraph H ′ induced by H on V (H) \ {u}, i.e., H ′ contains all
edges of H which do not contain u. Let k = deg(u), then by induction
there is an (m− k)× (m− k)-matrix B′ with per(B′) 6= 0 consisting of
columns of AH′ , at most two columns equal to AH′(., e) for each edge,
and at most one column equal to AH′(., v) for each vertex.

Now build an m × m matrix C from B′ by the use of the corre-
sponding columns of AH , and the addition of k identical columns equal
to AH(., u). These added columns all have k entries equal to 1, and
the remaining entries 0, so per(C) = k! per(B′) 6= 0. Now, whenever
u ∈ e ∈ E(H), and C contains AH(., ve), replace that column by the
column AH(., e). Note that AH(., e) = AH(., u) − AH(., ve). By the
multilinearity of the permanent, the difference of permanents of C and
the matrix after the switch is equal to the permanent of a matrix con-
taining (k+ 1) copies of AH(., u), a singular matrix with permanent 0.
Thus, we can make all these switches one-by-one, arriving at a matrix
D without columns equal to AH(., ve) and at most one column equal
to AH(., e) for u ∈ e ∈ E(H), and with per(D) = per(C).

To now get B from D, we will replace the columns equal to AH(., u)
appropriately one-by-one. For every e 3 u, replacing one column
AH(., u) by one of AH(., ve) and AH(., e) will result in a matrix with
per 6= 0. If both the resulting matrices had permanent 0, then by
the multilinearity of the permanent, the matrix before the replace-
ment would have had permanent 0, a contradiction. After replacing
all columns equal to AH(., u) this way, we arrive at B with the desired
properties. �

5. Conclusion and Open Questions

Linearity helps us in the proof of Theorem 8, but we believe that
this is just a technical problem, and we believe that the following is
true for all hypergraphs.

Conjecture 13. For every hypergraph H with all edges of order be-
tween 2 and r, and no edge consisting of a twin set, there is a weight-
ing ρ : E(H) → {1, 2, . . . , r + 1}, such that the induced vertex weights
ρ(v) :=

∑
e3v ρ(e) properly color V (H).

The only class of hypergraphs we know achieving this bound is the
one constructed above, stemming from the complete graphs Kr+1. Pos-
sibly, it is true that this is the unique example for r ≥ 3, and in all
other cases a set {1, 2, . . . , r} is sufficient.
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Note that most of our examples on the lower bounds are highly
non-uniform, they contain very small and very large edges. For r-
uniform hypergraphs, there may be a constant upper bound instead,
independent of r. But what is it? As mentioned, it may even be true
that for r ≥ 4, the set {1, 2} is sufficient. For r = 3, we conjecture the
same bound which is conjectured for r = 2:

Conjecture 14. For every 3-uniform hypergraph H without an isolated
edge, there is a weighting ρ : E(H) → {1, 2, 3}, such that the induced
vertex weights ρ(v) :=

∑
e3v ρ(e) properly color V (H).
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