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Abstract. We characterise the quartic (i.e. 4-regular) multigraphs with the property
that every edge lies in a triangle. The main result is that such graphs are either
squares of cycles, line multigraphs of cubic multigraphs, or are obtained from the
line multigraphs of cubic multigraphs by a number of simple subgraph-replacement
operations. A corollary of this is that a simple quartic graph with every edge in a
triangle is either the square of a cycle or a graph obtained from the line graph of a
cubic graph by replacing triangles with copies of K1,1,3.

1. Introduction

One of the most fundamental properties of a graph is whether it contains triangles,
and if so, whether it has many triangles or few triangles, and many authors have studied
classes of graphs that are extremal in some sense with respect to their triangles. While
studying an unrelated graphical property, the authors were led to consider the class of
regular graphs with the extremal property that every edge lies in a triangle; a property
that henceforth we denote the triangle property.

Although it seems impossible to characterise regular graphs of arbitrary degree with
the triangle property, there are considerable structural restrictions on a graph with the
triangle property when the degree is sufficiently low. In particular, when the degree is
4, these restrictions are so strong that we can obtain a precise structural description of
the family of quartic graphs with the triangle property, indeed even the class of quartic
multigraphs with the triangle property.

To state the result, we first need two basic families of quartic multigraphs with the
triangle property. The squared n-cycle C2

n is usually defined to be the graph obtained
from the cycle Cn by adding an edge between each pair of vertices at distance 2. However
for our purposes, we want to be more precise about multiple edges, and so for n ≥ 3,
we define C2

n as the Cayley multigraph1 Cay(Zn, {±1,±2}). For n = 3 and n = 4, this
creates graphs with multiple edges (see Figure 1) but for n ≥ 5 the graph is simple and
either definition suffices. Inspection of Figure 1 makes it clear that in all cases the graph
is a quartic multigraph with the triangle property.

The second basic family is the family of line multigraphs of cubic multigraphs. For a
multigraph G, we define the line multigraph L(G) to have the edges of G as its vertices,
and where two edges of G are connected by k edges in L(G) if they are mutually incident
to k vertices in G. In particular, if e and f are parallel edges in G, then there is a double
edge in L(G) between the vertices corresponding to e and f ; an example is shown in
Figure 2. The edge set of L(G) can be partitioned into cliques, with each vertex of degree
d in G corresponding to a clique of size d in L(G). Therefore if G is a cubic multigraph,

1Thus the “connection set” of the Cayley graph is viewed as a multiset.
1
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Figure 1. Squared cycles for n = 3, n = 4 and n = 8.

Figure 2. A cubic multigraph and its line graph

Figure 3. A 5-vertex quartic multigraph with the triangle property

the edge set of L(G) can be partitioned into triangles, showing in a particularly strong
way that L(G) has the triangle property.

Now there are certain subgraph-replacement operations that can be performed on a
graph while preserving the triangle property. A triangle T (viewed as a set of three
edges) is called eligible if it can be removed without destroying the triangle property, or
if one of the three edges belongs to a triple edge.The first two operations apply to graphs
with eligible triangles; in each an eligible triangle T is removed, leaving the vertices and
any other edges connecting them, and a new subgraph is attached in a specific way to
the vertices of the removed triangle. Operation 1 subdivides the three edges, and joins
the three new vertices with a new triangle, while Operation 2 replaces the triangle with
a copy of K1,1,3. Figure 1 depicts these operations.

The third and fourth operations replace specific subgraphs with larger subgraphs, and
are best described by Figure 5 rather than in words. The named vertices are the points
of attachment of the subgraph to the remainder of the graph and remain unchanged. In
Operation 3, the left-hand subgraph is necessarily an induced subgraph, but in Operation
4 it is possible that x and y are connected by a double edge, in which case the left-hand
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Figure 4. Operations 1 and 2 where {xy, yz, zx} is an eligible triangle
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Figure 5. Operations 3 and 4
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Figure 6. Operation 5, which creates a triple edge

subgraph is the entire squared 4-cycle and the right-hand graph one of the 5-vertex
quartic graphs with the triangle property. It is not possible for x and y to be connected
by a single edge (see Lemma 2 below).

The final operation decreases the number of vertices, and is used only to create triple
edges. It is shown in Figure 6 and again the named vertex is the point of attachment of
this subgraph to the graph. The left-hand subgraph is necessarily an induced block of
the original graph.

Finally we can state the main theorem of the paper.
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Theorem 1. If G is a connected 4-regular multigraph with the triangle property, then
either

(1) G is the square of a cycle of length at least 3, or
(2) G is the 5-vertex multigraph shown in Figure 3, which is obtained by applying

Operation 4 once to the squared 4-cycle (see Figure 3), or
(3) G can be obtained from the line multigraph of a cubic multigraph by a sequence

of applications of Operations 1–5.

The remainder of the paper proves this theorem.

2. Proof of the main theorem

We start with some elementary observations that will be repeatedly used in what
follows:

Lemma 1. A graph G has the triangle property if and only if for every vertex v ∈ V (G),
the graph induced by the neighbourhood of v contains no isolated vertices.

Proof. If w is an isolated vertex in N(v), then the edge vw does not lie in a triangle and
conversely. �

Lemma 2. If G is a quartic graph with the triangle property, and H is a subgraph of G
such that every vertex of H has degree 4 other than two non-adjacent vertices v and w
of degree 3, then G = H + vw.

Proof. Suppose that v and w are the two non-adjacent vertices of degree 3 in H. If the
fourth edge from v leads to a vertex x outside H, then x is isolated in N(v) (because all
the other neighbours of v already have full degree). Thus the fourth edge from v must
join v and w and then H + vw is quartic and hence equal to G. �

Theorem 2. The class of connected quartic multigraphs with the triangle property is
closed under Operations 1–5 and their reversals.

Proof. For each of the five operations, it is easy to check that every edge shown in either
the left-hand or right-hand subgraph lies in a triangle completely contained within the
subgraph, and so the replacement in either direction does not create any “bad” edges
not in triangles.

However, it remains to show that none of the edges that are removed in the operations
or their reversals are essential for creating triangles involving edges that are not shown,
either “optional edges” with both end vertices inside the subgraph or edges connecting
the subgraph to the rest of the graph. For all five operations, any optional edges must
connect pairs of named vertices, and it is clear that every pair of named vertices is at
distance 2 in the subgraphs on both sides of each operation (thus forming the necessary
triangle if the edge joining them was actually present).

Now consider edges connecting the subgraphs to the rest of the graph. For Operations
1 and 2 (forwards), the requirement that the triangle be eligible ensures that these edges
lie in triangles using only edges that will not be removed, while for Operations 1 and
2 (backwards) and the remaining operations in either direction, the named vertices are
adjacent only to vertices of degree four, and so there can be no triangles using an edge
of the subgraph except those completely contained in the subgraph.
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Figure 7. The right-hand graph of Operation 2 appears in Claim 2

�

The following proposition is the heart of the proof, as it characterises those quartic
graphs with the triangle property that have not arisen as a consequence of applying
Operations 1–4 to a smaller graph.

Proposition 1. Let G be a quartic graph with the triangle property on at least 5 vertices
that contains none of the subgraphs on the right-hand sides of Operations 1–4. Then
either

(1) G is the square of a cycle of length at least 7, or
(2) G is obtained from the line multigraph of a cubic multigraph by applications of

Operation 5.

Proof. The proof proceeds via a series of claims progressively restricting the structure
of G.

Claim 1: The double edges of G form a matching.

Suppose for a contradiction that uv and vw are both double-edges. By Lemma 1, u
is adjacent to w and because G has more than three vertices u is adjacent to a fourth
vertex x. By Lemma 1, the vertex x is forced to be adjacent to w, thereby creating the
subgraph on the right-hand side of Operation 3.

Claim 2: Every double edge is the diagonal of an induced K−4 .

Let xy be a double edge, and let v be a common neighbor of x and y (which must
exist by Lemma 1). Let x1 and y1 be the remaining neighbours of x and y, respectively,
and note that by Claim 1, x1 6= v 6= y1. If x1 6= y1, then x1v, y1v ∈ E(G) to create
the required triangles, which creates the right-hand graph of Operation 4 which is a
contradiction. Therefore we conclude that x1 = y1 and denote this vertex by w. If
vw ∈ E(G), then v and w must have an additional common neighbour, z. Therefore we
have deduced the existence of the subgraph shown in Figure 7 which clearly contains
K1,1,3 (the right-hand graph of Operation 2) which is again a contradiction. Therefore
vw /∈ E(G) and so {x, y, v, w} form an induced K−4 .

Claim 3: If G contains an induced K−4 with no multiple edges, then G is a squared
cycle of length at least 7.



6 FLORIAN PFENDER AND GORDON F. ROYLE

v1

v2 v3

v4

w3

w4 v1

v2 v3

v4

w3

w4

w2

w1

Figure 8. Two stages in the construction of Claim 3

Suppose that G contains an induced K−4 on the vertices {v1, v2, v3, v4} with all edges
vivj ∈ E(G) except v1v2. Let w3, w4 be the remaining neighbors of v3 and v4, respec-
tively. If w3 = w4, then G[{v1, v2, v3, v4, w3}] contains a K1,1,3, which is the graph on the
right side of Operation 2, a contradiction. Thus we can assume that w3 6= w4 obtaining
the first graph of Figure 8.

Now, to avoid w3 being isolated in the neighbourhood of v3, it must be adjacent to
either v1 or v2, and similarly for w4. However if either v1 or v2 is adjacent to both of w3

and w4, then this creates the graph on the right-hand side of Operation 1. Therefore,
by symmetry we can assume that v1w3, v2w4 ∈ E(G) and v1w4, v2w3 6∈ E(G). Contin-
uing, we see that the vertices v1 and v2 must each have a fourth neighbour w1 and w2,
respectively. To avoid w1 being isolated in N(v1) we must have w1w3 ∈ E(G) and to
avoid w2 being isolated in N(v2) we must have w2w4 ∈ E(G). If w1 = w2 then we have
the situation of Lemma 2 and so G is the square of the 7-cycle.

If w1 6= w2, then we have arrived at the second graph in Figure 8 and we can continue
this process. Note that w3w4 /∈ E(G) as w3 and w4 have no common neighbor amongst
the previously named vertices. So consider neighbours x3 and x4 of w3 and w4, respec-
tively. If x3 = w2, then the final neighbour of w2 is a neighbor of w3 (to create a triangle
for w2w3) and a neighbor of w4 (to create a triangle for w4x4), and thus x4 = w1, and
w1w2 ∈ E(G). In this case, G is the square of an 8-cycle.

So assume that x3 6= w2 and x4 6= w1. If x3 = x4, this forces w1w2 ∈ E(G), and G
is the square of a 9-cycle. If x3 6= x4, we continue with vertices x1 and x2, and so on.
At each stage of this process, there is a chain of K−4 s and we consider the two missing
neighbours of the two vertices of degree three. Either the two neighbours are both in the
chain already, in which case G is an even squared cycle, or the two neighbours coincide
in a single new vertex, in which case G is an odd squared cycle, or they are two new
vertices, in which case the chain is extended, and the argument repeated. Eventually
this process must stop, producing a squared cycle.

Claim 4: If G does not contain an induced K−4 with no multiple edges, then G can be
obtained from the line multigraph of a cubic multigraph by applications of Operation 6.

Create a simple graph S from G as follows. For every double edge, delete one of the
two end vertices (as these vertices are twins, it does not matter which one). For every
triple edge, delete two of the three edges. This graph does not contain K1,3 and K−4
as induced subgraphs, and so by Harary & Holzmann [1] it is the linegraph of a unique
triangle free graph L−1(F ). Now G can be reconstructed from L−1(F ) as follows: double
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every edge in L−1(F ) that corresponds to a vertex in G whose twin was deleted. Add
a double edge between the vertices of degree 1 on the edges corresponding to the end
vertices of each triple edge in G. This forms a cubic multigraph, and we can construct
G by taking the line multigraph of this graph and performing Operation 5 to recover
the triple edges. �

With these results, we are now in a position to prove the main theorem.

Proof. (of Theorem 1) Suppose that G is a quartic graph with the triangle property, and
repeatedly perform the reverse of Operations 1–4 until the resulting graph G′ has no
subgraphs isomorphic to any of the graphs on the right-hand side of Operations 1–4. If
G′ has at least 5 vertices, then by Proposition 1, it is either a squared n-cycle for n ≥ 7
or has been obtained from the line multigraph of a cubic multigraph by applications of
Operation 5. In the former case, G itself is equal to the squared n-cycle, because for
n ≥ 7, the squared n-cycles contain no eligible triangles. In the latter case, combining
the applications of Operation 5 that transform the line multigraph of a cubic multigraph
into G′ with the applications of Operations 1–4 that transform G′ into G shows that G
has the required structure. If G′ has fewer than 5 vertices then it is either the squared
3-cycle or the squared 4-cycle. The squared 3-cycle is the linegraph of a triple edge,
while the only operation that can be applied to the squared 4-cycle is Operation 4 which
creates the graph of Figure 3 (to which no further operations can be applied.) �

Remarks: Some graphs appear in more than one of the classes of Theorem 1. In
particular, the squared 3-cycle is also the line graph of a triple edge, the squared 5-
cycle (that is, K5) is obtained by applying Operation 2 to the squared 3-cycle, while the
squared 6-cycle is obtained by applying Operation 1 to the squared 3-cycle.
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