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1. Introduction 
Although computational biology has been an increas- 
ing activity in computer science for more than a 
decade, it has been only the past few years that opti- 
mization models have been developed and analyzed 
by researchers whose primary background is oper- 
ations research (OR). The purpose of this survey is 
to demonstrate the applicability of mathematical pro- 
gramming, from an OR perspective, to these problems 
in molecular biology. 

We begin with some vocabulary, but more, context- 
dependent biology will be described in each section. 
This will not be enough biology to develop your 
own research in this exciting frontier, but it is enough 
to understand many of the problems and make an 
informed decision whether to pursue this field. The 
appendix offers guidance to getting started. 

One class of problems involves sequences from one 
of the following alphabets: 

1. Four nucleotides in DNA (one-letter code in bold 
capital): 

{Adenine, Cytosine, Guanine, Thymine] 

2. Four nucleotides in RNA (one-letter code in bold 
capital): 

{Adenine, Cytosine, Guanine, Uracil) 

3. Twenty amino acid residues in proteins: 

Name Symbol Name 

Alanine 
Arginine 
Asparagine 
Aspartic acid 
Cysteine 
Glutamine 
Glutamic acid 
Glycine 
Histidine 
Isoleucine 

Leucine 
Lysine 
Methionine 
Phenylalanine 
Proline 
Serine 
Threonine 
Tryptophan 
Tryosine 
Valine 

Symbol 

L 
K 
M 
F 
P 
S 
T 
W 
Y 
v 

From one sequence's information, we would like 
to recognize or predict structure. From multiple se- 
quences, we would like to compare structures and 
determine if they are in the same "family." It is 
believed, with some reservation, that structure deter- 
mines function, although this issue is still being 
explored. If we can predict function from sequence, we 
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can design and test drugs in silico (in the computer), 
rather than in vivo (in an organism or living cell), or in 
vitro (in a test tube). 

The process by which this works is the central dopa 
of biology: 

DNA 
transcription * translation 

RNA proteins. 

There is evidence that these processes usually obey 
the thermodynamics hypothesis, which states that matter 
seeks a minimum free-energy state. That is one basis 
for using optimization to predict or analyze struc- 
tures, but it is not the only use. For example, using 
statistical methods one needs to maximize a likeli- 
hood function or minimize an error function, each 
subject to certain conditions. 

In general, proteins with similar structures have 
similar functions, although this is not always true. 
More recently, attention has been paid to interactions 
of proteins, under the general topic of pathway infer- 
ence (Bower and Bolouri 2001, Greenberg et al. 2002). 
A logical extension is more general interactions, mod- 
eled with gene networks and protein complexes. One 
approach to this is systems biology (Ideker et al. 
2001), taking into account some of the many biologi- 
cal complexities. 

In the following sections we give mathematical pro- 
gramming models for a broad spectrum of applica- 
tions. We begin with sequence alignment, which has 
been well surveyed (Hazewicz et al. 1997). More 
recent work in single nucleotide polyrnorphisms 
(SNPs) and haploids uses linear programming and 
combinatorial optimization models. Then, we consider 
two problems in rearranging or assembling DNA seg- 
ments. We also consider the biology problem that is 
perhaps the most celebrated: protein folding. Here we 
describe two fundamental applications in protein sci- 
ence: structure prediction and structure comparison. 

We present problem formulations for each of 
these applications and discuss how solutions can be 
obtained. The problems are mostly NP-hard, so exact 
algorithms are limited in the size of problem they 
can solve. This raises challenging opportunities for 
finding approximation algorithms. Some metaheuris- 
tics have been applied, but there are opportunities to 
experiment further. 

Standard mathematical programming terminology 
is used, which can be found in the Mathematical Pro- 
gramming Glossary (Greenberg 2003). 

2. Sequence Alignment 
Sequence alignment is the association of each mem- 
ber of one sequence with a member of one or more 
other sequences in a way that maximizes some mea- 
sure of similarity. The sequence of three characters ABC 

Figure 1 Example Alignments of Two Sequences, ABC and BCDE 

can be aligned with the sequence BCDE by aligning 
the BC in common and having spaces inserted into 
the sequences for the complete alignment. That is the 
first alignment in the example alignments shown in 
Figure 1. 

The next section presents the concepts that give the 
exact meaning of the spaces, how we measure the 
similarity, and why we want to do this. 

2.1. Concepts 
One reason to do this is to infer properties of one 
sequence, given that we know those properties of the 
other. For example, we might know where the genes 
are in one DNA sequence, but not in the other. If 
the second sequence is sufficiently similar, we can 
infer where its genes are. This approach is produc- 
tive because individual gene sequences in mouse and 
human are highly similar; even the linear order of 
the genes is similar in the two genomes. The mouse 
genome can be viewed as a set of under 200 seg- 
ments of the human genome whose order has been 
permuted. 

More generally, there are segments of interest that 
we are trying to understand by using information 
from the first sequence. An implication of this is that 
we can discover binding sites that would enable us to 
alter cellular processes-such as a drug for changing 
a gene that produces a malfunctioning protein, or that 
produces too much or too little of a protein. 

The sequences could be from any of our four 
alphabets, but we shall focus on the DNA alphabet, 
s4 = {A,C,G,T). We let sQ+ denote the set of non-null 
sequences from s4. 

Given two sequences (sf t) of the same length, 
drawn from the same alphabet, their Hamming dis- 
tance, DH(s, t), is the number of positions in which 
they have different characters. 

Example: sequence s: AAT AGCAA AGCACACA 
sequence t: TAA ACATA ACACACTA 
DH(s, t) = 2 3 6 

A similarity measure is a function that associates 
a numerical value with a pair of sequences. Often 
this is normalized to be in [O, 11. When comparing 
two sequences, we introduce operations whose mean- 
ing stems from evolution and choose those oper- 
ations that seek to maximize the similarity of the 
sequences. The notion of similarity is dual to that of 
distance: greater similarity corresponds to less dis- . 
tance between two sequences. 
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A- CACACTA 

AGCACAC-A 

$. - T deleted 
G inserted 
(a) Sequence Transformation 

common ancestor 

AGCACACTA 

ACACACTA AGCACACA 
(b) Homology 

Figure 2 Insertion and Deletion to Align Sequences 

Similarity measures vary, but they are generally 
more flexible than distance measures. For one thing, 
similarity does not require two sequences to have the 
same length. Also, we allow operators such as shifting 
positions. For the last example above, s and t differ by 
six characters. However, if we are allowed to delete 
G from s and T from t, the two sequences become 
ACACACA. In this sense, they are only two characters 
apart. 

We consider a sequence alignment problem that 
uses three operations: 

1. Delete a character from one sequence. 
2. Insert a space into one sequence. 
3. Replace one character with another. 
A biological meaning of deletion and insertion is 

illustrated in Figure 2. The first assumption, shown 
in (a), is that one sequence descended from the other. 
Another view is by homology: their similarity is based 
on having a common ancestor in evolution, shown 
in (b). 

In case (a), we do not want to assume which 
sequence was earlier, so we tacitly assume time sym- 
metry. This implies that insertion into one sequence 
is a deletion in the other, depending upon which 
evolved into the other. Computationally we view it 
as a shift in one sequence or the other. In the exam- 
ple all other characters matched, so there were no 
replacements. 

2.2. Pairwise Alignment 
The problem of pairwise alignment is to find oper- 
ations on s and t, where the symbol "-" is added 
to the alphabet to represent deletion or insertion, 
such that the Hamming distance is minimized. For 
example, the alignment in Figure l(a) has a Ham- 
ming distance of three, and others each have a Ham- 
ming distance of four, so (a) would be the preferred 
alignment. In general, let si denote the subsequence 
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(sI, . . . , si), with so d=d 4 (=null sequence). Define ti 
similarly. Let c(a, b) denote the cost of replacing a 
with b at some point in the sequence, where a # b; let 
c(-, b) denote the cost of an insertion and let c(a, -) 
denote the cost of a deletion. The unit cost model is 
where c(a, -) = c(- ,  b) = 1, independent of the charac- 
ters a and b. 

Let D(si, ti) denote the minimum total cost of 
applying these operations; this is sometimes called 
the edit distance between sequences si and ti. In par- 
ticular, the unit cost model is simply the ~ b g  
distance, which is the number of evolutionary events 
that occurred to transform one sequence into the 
other, or to transform a common ancestor into each 
of them. Further, let L, denote the length of string S. 

Then, D satisfies the following recursion: 

c(si, ti) f D(si-l , tip1) (replacement) 

c(-, ti) +D(si-' , ti) (insertion) 
c(si, -) +D(si, ti-') (deletion) 

Beginning with D(4,4) = 0, this dynamic program 
(DP) can be solved in O(L,L,) time. 

A variety of cost functions have been considered 
by researchers. It is generally held that four consec- 
utive insertions are preferred to four non-conse~~ti~e 
insertions. The rationale for this is that a consecutive 
sequence of insertions (or deletions) could result from 
a single evolutionary event. A consecutive sequence 
of insertions is called a gap with length L equal 
to the number of insertions after the first one. The 
cost to begin a gap is a, and the cost of the gap 
is PL, where a > p. The afJlne gap model seeks to 
minimize Ci(a  + pLi), where the sum is over the 

gaps. 
Example: ACGTCCACG ACGTCCACG 

A-G-CCACG A---CCACG 
Cost: 2a a +2p 

Gusfield's system, XPARAL (Gusfield 2001)~ Pro- 
vides a complete parametric analysis of a! and p. 

2.3. Multiple Sequence Alignment (MSA) 
Dynamic programming provides a fast algorithm 
to align two sequences for a variety of distance 
measures. However, several approaches align- 
ment measures have been proposed to align k > 2 
sequences. Aligning multiple sequences consists in 
arranging them as a matrix having each sequence in 
a row. This is obtained by possibly inserting spaces 
in each sequence so that the expanded sequences all 
have the same length. One measure of distance is to 
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sum the edit distances of the pairwise alignments. For 
example consider the sequences 

Example: s: AAGCTGCAAAGC 
t: AAGCTG-AAAGC 
U: A-GCT-CAA-GC 
v: A-GCTTCAACCG 

The total edit distance of these sequences is 
D H ( ~ ,  t) + DH(s, u) + D,(s, v) + DH(t, U) + DH(~ ,  V) + 
DH(u, v). Using the unit cost model, this becomes 

(Note: u2 = v, = - is considered a match.) 
The complexity of a DP algorithm to minimize the 

total edit distance is 0(2kLl,. . . , L,). A small prob- 
lem has k = 10 and L, = 100 for i = 1, . . . , k. The DP 
for the associated problem has complexity 782 x lo2', 
which is greater than the postulated age of the uni- 
verse in microseconds! Thus, DP is not practical. Fur- 
ther, MSA is NP-hard for this objective (Wang and 
Jiang 1994), so we should not expect any exact algo- 
rithm to solve this problem efficiently. Insights into 
some of the alignment heuristics can be found by 
studying Clustal (Thompson et al. 1995). 

Another approach to MSA considers the sequences 
as leaves of a phylogenetic tree-a graphical represen- 
tation of the evolutionary history of species or their 
parts. Solving MSA involves finding sequences for 
the internal nodes so as to minimize the sum of the 
painvise distances associated with edges. The sim- 
plest of these is the Steiner tree, an example of which 
is shown in Figure 3. Only one node (so) is to be 
determined, and the sequence is to minimize the sum, 
cB=l  so, s,). 

Jiang et al. (1994) used Steiner tree alignment in an 
approximation algorithm for an arbitrary tree, which 

I 

ACGTCTAC ? 

(ACCGTTAC ) 
(a) Given Tree 

GACCGT-T 

-A-CGTCTAC [-W-ACC +-AC-GT-TA] 

0 

C-ACCGT-TACI 
(b) Solution 

Figure 3 Steiner Tree Alignment Example: Total Distance = 4 

guarantees being within twice the minimum total dis- 
tance. (See Gusfield 1997 for more on string structures 
and algorithms.) 

2.4. Open Questions 
A primary method for obtaining approximate solu- 
tions to MSA is the Carrillo-Lipman (Carrillo and Lip- 
man 1988, Fuellen 1997) use of projection, using dy- 
namic programming in two-dimensional state spaces 
to infer bounds. Gusfield (1993) gives a simple proof 
of an approximation algorithm, which guarantees 
being no worse than twice (in fact 2 - 2/k) the 
sum of pairwise alignments (for any distance func- 
tion). (What we call an objective function is typi- 
cally called a scoring function, whose value is the 
score, of a candidate alignment.) One open question 
is whether there exists a better approximation algo- 
rithm, i.e., a &approximation algorithm with 6 < 2. 
Bafna et al. (1997) present an approximation algorithm 
with ratio 2 - Ilk, where 1 is any constant smaller 
than k. Although this is better than Gusfield's 2 - 2/k 
ratio, as k grows, the approximation ratio still tends 
to two. 

Notredame and Higgins (1996) present a genetic 
algorithm for MSA, but little has been done using 
metaheuristics since then. This is therefore another 
open question: Can metaheuristics obtain reliably good ' 

solutions to large MSA problems? By "reliably" and 
"good," we mean with the kind of results we experi- 
ence in well-established OR problems, like scheduling. 

3. SNPs and Haploids 
3.1. Concepts 
The process of passing from the sequence of nucleo- 
tides in a DNA molecule to a string over the DNA 
alphabet is called sequencing. While in principle this 
may seem a simple step, merely preliminary to all the 
computational problems discussed here, the truth is 
that sequencing is a crucial phase, and has not yet 
been fully resolved. A sequencer is a machine that is 
fed some DNA and whose output is a string of As, 
Ts, Cs, and Gs. To each letter, the sequencer attaches a 
value (confidence level) that essentially represents the 
probability that the letter has been correctly read (the 
"base has been correctly called"). 

The main problem with sequencing is that cur- 
rent technology is not able to sequence a long DNA 
molecule, which must therefore first be replicated 
(cloned) into many copies and then be broken at ran- 
dom, into several pieces (called fragments) of about 
1,000 nucleotides each, which are individually fed to 
a sequencer. The cloning phase is necessajr so that 
the fragments can have nonempty overlap. From the 
overlap of two fragments one may infer a longer frag- 
ment, and so on, until the original DNA sequence 



Greenberg, Hart, and Lancia: Opportunities for Combinatorial Optimization in Computational Biology 
WORMS Journal on Computing 16(3), pp. 211-231, 02004 INFORMS 215 

has been reconstructed. This is, in essence, the prin- Chrom. c ,  paternal: ataggtccCtatttccaggcgcCgtatacttcgacgggActata 

ciple of shotgun sequencing, in which the fragments Chrom. c,  maternal: ataggtccGtatttccaggcgc~gtatacttc~ac~~~~ctata 

are assembled back into the original sequence by 
using sophisticated algorithms and powerful comput- Haplotype c c A 

Haplotype 2 -t G C T ers. Shotgun sequencing allowed an early comple- 
tion the sequencing of the human genome (Venter Figure 4 A Chromosome and the Two Haplotypes 
et al. 2001, Genome 2001). The assembly (i.e., over- 
lap and merge) phase is complicated by -the fact that 
in a genome there exist many regions with identical 
content (called repeats) scattered all around and due 
to replicating events during evolution. The repeats 
may fool the assembler into thinking that they are all 
copies of the same region. The situation is compli- 
cated further from the fact that diploid genomes are 
organized into pairs of chromosomes (a paternal and 
a maternal copy), which may have identical or nearly 
identical content, a situation that makes the assembly 
process even harder. 

To partly overcome these difficulties, the fragments 
used in shotgun sequencing may have some extra 
information attached. In fact, they are obtained by a 
process that generates pairs (called mate pairs) of frag- 
ments instead of individual ones, with a fairly precise 
estimate of the distance between them. These pairs are 
guaranteed to come from the same copy of a chromo- 
some (either both from the maternal or both from the 
paternal copy) and may help whenever one of them 
comes from a repeat region while the other does not 
(and can be used as an anchor to place its troublesome 
mate). 

The recent whole-genome sequencing efforts have 
confirmed that the genetic makeup of humans (as 
well as other species) is remarkably well conserved, 
and we all share some 99% identity at the DNA 
level. Hence, small regions of differences must be 
responsible for our diversities. The smallest possi- 
ble region, consisting of a single nucleotide, is called 
single nucleotide polymorphism, or SNP (pronounced 
"snip"). It is believed that SNPs are the predominant 
form of human genetic variation, so their importance 
cannot be overestimated for medical, drug-design, 
diagnostic, and forensic applications. 

Broadly speaking, a polymorphism is a trait, com- 
mon to everybody, whose value can be different but 
drawn in a limited range of possibilities, called alle- 
les (for a simple example, think of the blood group). 
A SNP is a particular nucleotide site, placed in the 
middle of a DNA region that is otherwise identical 
in everybody, at which we observe a statistically sig- 
nificant variability. In particular, a SNP is a polymor- 
phism of only two alleles (out of the four possible), 
for which the less frequent allele is found in the pop- 
ulation with some nonnegligible frequency, usually 
taken to be 5%. Because DNA of diploid organisms 
is organized in pairs of chromosomes, for each SNP 
one can either be homozygous (same allele on both 

chromosomes) or heterozygous (different alleles). The 
values of a set of SNPs on a particular chromosome 
copy define a haplotype. The haplotyping problem is 
to determine a pair of haplotypes, one for each copy 
of a given chromosome, that provides full informa- 
tion of the SNP fingerprint for an individual at that 
chromosome. In Figure 4 we give a simple example 
of a chromosome with three SNP sites. The individual 
is heterozygous at SNPs 1 and 3 and homozygous at 
SNP 2. The haplotypes are CCA and GCT. 
In recent years, several optimization problems have 

been defined for SNP data. In the remainder of this 
section, we address the haplotyping problem for a 
single individual and for a set of individuals (a popu- 
lation). In the first case, the input is inconsistent hap- 
lotype data. Note that, for diploid organisms, the two 
copies of each chromosome are sequenced together, 
are not identical, and, as previously observed, there 
are unavoidable sequencing errors. In the latter case, 
the input is ambiguous genotype data, which specifies 
only the multiplicity of each allele for each individ- 
ual (i.e., it is known if individual i is homozygous or 
heterozygous at SNP j, for each i and j). 

3.2. Haplotyping a Single Individual 
As discussed in the introductory remarks, sequenc- 
ing produces either individual fragments or pairs of 
fragments (mate pairs) that both come from one of 
the two copies of a chromosome. Even with the best 
possible technology, sequencing errors are unavoid- 
able: these consist of bases that have been miscalled 
or skipped altogether. Further, contaminants can be 
present, i.e., DNA coming from another organism 
that was wrongly mixed with the one that had to be 
sequenced. In this framework, the haplotyping problem 
for an individual can be informally stated as follows: 

Given inconsistent haplotype data coming from frag- 
ment sequencing, find and correct the errors from the 
data to retrieve a consistent pair of SNPs haplotypes. 

Depending on what type of errors one is after, there 
can be many versions of this problem. In Lancia et al. 
(2001a), the minimum fragment removal (MFR) and 
minimum SNP removal (MSR) problems are consid- 
ered, which we briefly discuss here. 

Given the fact that at each SNP only two alleles 
are possible, we can encode them by using a binary 
alphabet. In the sequel, the two values that a SNP can 
take are denoted by the letters A and B. A haplotype, 



Greenberg, Hart, and Lancia: Opportunities for Combinatorial Optimization in Computational Biology 
216 INFORMS Journal on Computing 16(3), pp. 211-231,02004 INFORMS 

S N P  
1 2 3 4 5 6  

, 1 A B - A A B  
G! o 2 B A - - B -  
a 3 - A B A B A  
(d 1 & 4 - A B - B A  

5 B - A B A -  

(4 M  (b) G d M )  

I I Figure 5 Conflict Graphs for Haplotype Matrix, M 

i.e., a chromosome content projected on a set of SNPs, 
is then simply a string over the alphabet {A, B]. 

The basic framework for a single-individual hap- 
lotyping problem is as follows. There is a set 3' = 
{I,. . . , n) of SNPs and a set 9 = {I,.  . . , m} of frag- 
ments. Each SNP is covered by some of the frag- 
ments, and can take the values A or B. Hence, a SNP 
i is defined by a pair of disjoint subsets of frag- 
ments, A, and B,. Because there is a natural order- 
ing of the SNPs, given by their physical location on 
the chromosome, the data can be represented by an 
m x n matrix over the alphabet {A, B, -1, called the SNP 
matrix, defined in the obvious way. The symbol "-" is 
used to represent a SNP not covered by a fragment. 

A gapless fragment is one covering a set of con- 
secutive SNPs (i.e., the As and Bs appear consecu- 
tively in that row). We say that a fragment has k gaps 
if it covers k + 1 blocks of consecutive SNPs. There 
can be gaps for two reasons: (i) thresholding of low- 
quality reads (if the sequencer cannot call a SNP A or B 
with enough confidence); (ii) mate-pairing in shotgun 
sequencing. Particularly important is the case k = 1, 
which is equivalent to two gapless fragments coming 
from the same chromosome. This is the case of mate 
pairs, used for shotgun sequencing. 

Two fragments i and j are said to be in conflict if 
there exists a SNP k such that (i E A,, j E B,) or (i E 

B,, j E A,). This means that either i and j are not from 
the same chromosome copy, or there are errors in the 
data. Given a SNP matrix M, the fragment conflict 
graph is the graph G,(M) = (3, E,) with an edge for 
each pair of fragments in conflict. Two SNPs, i and 
j, are said to be in conflict if Ail Bi, A,, and Bi are 
all nonempty and there exist two fragments u and v 

such that the submatrix defined by rows u and v and 
columns i and j has three symbols of one type (A or B) 
and one of the opposite (B or A respectively). It is easy 
to see that two SNPs in conflict imply that there are 
three fragments forming an odd cycle in the graph 
G,(M). Hence the two SNPs cannot both be correct 
(assuming the fragments are). Given a SNP matrix M, 
the SNP conflict graph is the graph G,(M) = (50, E,), 
with an edge for each pair of SNPs in conflict. 

If G,(M) is a bipartite graph, 9 can be segregated 
into two sets HI and H, of painvise compatible frag- 
ments. From each set one can infer one haplotype 
by fragment overlap (this process is known as phas- 
ing). Note that the overlap may not be unique because 
there may be a subset of fragments that do not over- 
lap with any of the remaining fragments. We call a 
SNP matrix M feasible if G,(M) is bipartite. Note that 
a SNP matrix for error-free data must be feasible. 
Hence, the optimization problems to be defined cor- 
rect a SNP matrix so that it becomes feasible. 

The following optimization problems arose in the 
context of sequencing the human genome and are 
studied in Lancia et al. (2001a), Lippert et al. (2002): 

MFR: Given a SNP matrix, remove the mini- 
mum number of fragments (rows) so that the result- 
ing matrix is feasible. 

MSR: Given a SNP matrix, remove the mini- 
mum number of SNPs (columns) so that the resulting 
matrix is feasible. 

The first problem is mainly suited for a situation 
in which, more than sequencing errors, one is wor- 
ried about the presence of contaminants. The second 
problem is more suited in the presence of sequencing 
errors only, when all the fragments are to be retained. 
These problems were shown (Lancia et al. 2001a) to 
be polynomial for gapless data (M is a gapless matrix 
if each row is a gapless SNP). The main connection 
between them is given by the following theorem. 

THEOREM 3.1. Let M be a gapless SNP matrix. Then, 
G,(M) is a bipartite graph if, and only if, G,(M) is a 
stable set. 

A stable set, also called an independent set, is a sub- 
set of nodes in a graph such that no two nodes are 
adjacent (see Greenberg 2003 for details and related 
terms). Because all SNP conflicts must be eliminated, 
a feasible solution to the MSR problem needs to 
remove nodes from G,(M) until a stable set remains. 
The optimal solution must leave the largest stable set. 
When M is gapless, the problem is solvable in poly- 
nomial time, as was shown in Lancia et al. (2001a) by 
proving that in this case G,(M) is a perfect graph. (It 
is known that finding the largest stable set in any per- 
fect graph is a polynomial problem Golumbic 1980, 
Groetschel et al. 1984.) A simpler proof than the one 
in Lancia et al. (2001a) is as follows. Let Q = (Y, A) 
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with {i, j} E A if i is not in conflict with j and i c j (as 
column indices in M). Because it can be shown that, 
for any three SNPs u c v c w, if u is not in conflict 
with v and v is not in conflict with w then also u is 
not in conflict with w, Q is a comparability graph, 
and hence perfect (Golumbic 1980). However, G,(M) 
is the complement of Q, so it is also perfect. 

A later theoretical improvement in Rizzi et al. 
(2002) extended these results to fragments with gaps 
of bounded length, giving 0(22'm2n + 23'n3) dynamic 
programming algorithms for MFR and O(mn21+2) for 
MSR for instances with gaps of total length 1. This 
algorithm is hardly practical, however, on instances 
for which the gaps can be rather large, such as in the 
presence of mate pairs. The problems were shown to 
be NP-hard in general (Lancia et al. 2001a). Because 
gaps generally occur, there is a need for practical algo- 
rithms for the gapped versions of these problems. 

The following version of the haplotyping problem 
appears to be the most appropriate to account for the 
fact that data come from sequencing, and hence there 
are sequencing (read) errors to be corrected. 

MLF (minimum letterpips): Given a SNP matrix, flip the 
minimum number of letters (A into B and vice versa) 
so that the resulting matrix is feasible. 

This problem has not been studied so far, and hence 
it is open as far as its complexity and availability 
of practical algorithms. Particularly interesting is its 
weighted version in which, for each entry, there is a 
weight for its flipping, which should be proportional 
to (or at least correlated with) the confidence level of 
the sequencer machine's reading errors. Another vari- 
ant contemplates a three-way flip (i.e., one can flip 
from/to the gap as well). 

Consider a square in M (i.e., four symbols at the 
corners of two rows and two columns) with no gaps. 
Call such a square even if there is an even number of 
As (and hence also Bs) and odd otherwise. If a solution 
does not use flips to eliminate a whole column (by 
making it all A or all B), in any even (odd) square an 
even (odd) number of letters must be flipped. 

Hence, the following version of the set covering 
problem, called the parity set covering problem, may be 
useful to solve the MLF problem: Given a family F = 
E U 0 of elements partitioned into even elements E 
and odd elements 0 and a collection % of subsets of 
F, find a set %' & % such that each e E E belongs to an 
even number of elements of %' (possibly none), each 
o E 0 belongs to an odd number of elements of %', 
and I%'] is minimum. To our knowledge, this version 
of the set covering problem has not been studied. 

3.3. Haplotyping a Population 
Haplotype data are particularly sought after in 
the study of complex diseases (those affected by 
more than one gene), because they contain complete 

information about which set of gene alleles are 
inherited together. However, because polymorphism 
screens are conducted on large populations, in such 
studies, it is not feasible to examine the two copies 
of each chromosome separately, and genotype, rather 
than haplotype, data are usually obtained. A geno- , 

type describes the multiplicity of each SNP allele for 
the chromosome of interest. At each SNP, three possi- 
bilities arise: Either one is homozygous for the allele A, 
or homozygous for the allele B, or heterozygous (a sit- 
uation that we shall denote with the symbol X). Hence 
a genotype is a string over the alphabet {A, B, X}, 
where each position of the letter X is called an ambigu- 
ous position. For a genotype g and SNP j, let g[j] 
denote the j th symbol of g. We say that a genotype g 
is resolved by the pair of haplotypes (h, q} if, for each 
SNP j, g[j] = A implies h[j] = q[j] = A, g[j] = B implies 
h[j] = q[j] = B, and g[j] = X implies h[j] # q[j]. We 
then write g = h @ q. A genotype is called ambiguous 
if it has at least two ambiguous positions (a genotype 
with at most one ambiguous positions can be resolved 
uniquely). A genotype g is said to be compatible with 
a haplotype h if h agrees with g at all unambiguous 
positions. The following inference rule, given a geno- 
type g and a compatible haplotype h, defines q such 
that g = h @ q .  

Inference Rule. Given a genotype g and a compat- 
ible haplotype h, obtain a new haplotype q by setting 
q[j] # h[j] at all ambiguous positions and q[j] = h[j] 
at the remaining positions. 

The haplotyping problem for a population is the fol- 
lowing. 

Given a set '3 of m genotypes over n SNPs, find a set 
X of haplotypes such that each genotype is resolved 
by at least one pair of haplotypes in X. 

To turn this problem into an optimization problem, 
one has to speclfy the objective function. We describe 
here two possible objective functions. On the study of 
the first formulation, although most natural, there has 
been little progress thus far. In this formulation, one 
seeks to minimize 1 Z 1 (see Gusfield 2003 for an integer 
programming approach to this problem). Thinking of 
a haplotype h as a set, which covers all genotypes 
that are compatible with it, this is similar to the set 
covering problem, with the additional constraint that 
each ambiguous genotype g must be covered by (at 
least) two sets h and q for which g = h @ q. 

The second formulation of the haplotyping problem 
has been studied (Gusfield 1999, 2000) and is based 
on a greedy algorithm for haplotype inference, also 
known as Clark's rule. 

In its second formulation, the problem began as 
a feasibility problem. We ask if the haplotypes in 
Z can be obtained by successive applications of the 
inference rule, starting from the set of haplotypes 
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obtained by resolving the unambiguous genotypes (of 
which it is assumed here there is always at least one). 
This way of proceeding was proposed in Clark (1990) 
with arguments from theoretical population genetics 
in support of its validity. In essence, Clark's rule is the 
following, nondeterministic, algorithm. Let 3' be the 
set of non-ambiguous genotypes, and let X be the set 
of haplotypes obtained unambiguously from '3'. Start 
with setting 3 t 3\55'' (notation: 3\3' is the set of 
elements in '3 minus those in '3', and this replaces 3). 
Then, repeat the following. Take a g E '3 and a com- 
patible h E X and apply the inference rule, obtaining 
q. Set % t 3\{g], X t X u  {q], and iterate. When no 
such g and h exist, the algorithm will have succeeded 
if 3 = 0 and will have failed otherwise. 

For example, suppose 3 = {XAAA, XXAA, BBXX]. The 
algorithm starts by setting %! = {AAAA, BAAA} and 3 = 
{XXAA, BBXX]. The inference rule can be used to resolve 
XXAA from AAAA, obtaining BBAA, which can, in turn, 
be used to resolve BBXX, obtaining BBBB. However, 
one could have started by using BAAA to resolve XXAA 
obtaining ABAA. At that point, there would be no way 
to resolve BBXX. The non-determinism in the choice 
of the pair g, h to which we apply the inference rule 
can be settled by fixing a deterministic rule based 
on the initial sorting of the data. Clark (1990) used 
a large (but tiny with respect to the total number of 
possibilities) set of random initial sortings to rn the 
greedy algorithm on real and simulated data sets, and 
reported the best solution overall. Many times the 
algorithm failed, but Clark's algorithm can be viewed 
as a heuristic for the optimization version of the prob- 
lem: Find the ordering of application of the infer- 
ence rule that leaves the fewest number of unresolved 
genotypes in the end. This problem was studied by 
Gusfield (1999), who proved it is NP-hard and APX- 
hard. (A problem is APX-hard if there is a constant 
a > 1 such that the existence of an a-approximation 
algorithm would imply P = NP. See Ausiello et al. 
(1999) for a full description of the class APX.) 

As for practical algorithms, Gusfield (2000) pro- 
posed an integer programming approach for a graph- 
theoretic formulation of the problem. The problem 
is first transformed (by an exponential-time reduc- 
tion) into a problem on a digraph G = (N,A), 
defined as follows. Let N = UgE3 N(g), where N(g) := 
{(h, g): h is compatible with g]. N(g) is (isomorphic 
to) the set of possible haplotypes obtainable by setting 
each ambiguous position of a genotype to one of the 
two possible values. Let N' = U,,, N(g) be (isomor- 
phic to) the subset of haplotypes unambigously deter- 
mined from the set 3' of unambiguous genotypes. For 
each pair v = (h, g'), w = (q, g) in N, there is an arc 
(v, w) E A if g is ambiguous, g' # g, and g = h @I q (i.e., 
q can be inferred from g via h). Then, any directed 
tree rooted at a node v E N' specifies a feasible history 

of successive applications of the inference rule start- 
ing at node v E N'. The problem can then be stated as: 
find the largest number of nodes in N\N1 that can be 
reached by a set of node-disjoint directed trees, where 
each tree is rooted at a node in N' and where for every 
ambiguous genotype g, at most one node in N(g) is 
reached. 

The above graph problem was shown to be NP- 
hard (Gusfield 1999). (Note that the reduction of the 
haplotyping problem to this one is exponential time, 
and hence it does not imply NP-hardness trivially.) 
For its solution, Gusfield proposed 

max xu: x , ~ { O , l ]  VVEN 
vcN\Nf 

Gusfield focused on the LP relaxation because he 
observed, on real and simulated data, that its solu- 
tion was almost always integer. He reduced the LP 
dimension by defining variables for only those nodes 
that are reachable from nodes in N'. In cases where 
the LP relaxation was not integer, Gusfield manually 
set one or more fractional variables equal to zero. He 
also pointed out the possibility of an integer solution 
containing directed cycles, but this situation never 
occurred in his experiments. 

A simple improvement of this model is immedi- 
ate for researchers with mathematical programming 
background. First, one could add subtour elimination- 
type inequalities, which are easy to separate. Sec- 
ond, the model could be solved within a standard 
branch-and-cut framework, of which Gusfield's cur- 
rent approach explores only the root node. 

3.4. Using SNPs for Disease Diagnosis 
We finish this section by pointing out a problem that 
arises in the context of disease diagnosis (for instance, 
when trying to determine a gene mutation responsi- 
ble for a tumor). 

Genotype data are collected from a population of 
rn individuals, of which some have a certain disease 
while the others do not. Hence the data comprise a 
set '3 of m genotypes over n SNPs. Let 3 = 3, U 3, 
where 3, is the subset of genotypes from people with 
the disease and SH are the genotypes from healthy 
people. Assuming the disease is due to "faulty" hap- 
lotypes, the following new version of the haplotyping 
problem, called the disease haplotyping problem, is to be 
considered. Resolve the ambiguous genotypes into a 
set %! of haplotypes for which there exists a subset 

X such that: (i) for all g E '3,, there exist h, q E %! 
such that g = h @ q and h E X, v q E X,; (ii) for all 
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g E there exist h, q E 2 such that g = h $ q and 
h $ ZD A q 6 ZD. The objective calls for minimizing 
I%]. When there is no feasible solution, the objective 
function should be changed into the following: Find 
2 and ZD C 2 for which the total number of geno- 
types not satisfying (i) or (ii) above is minimum. 

We also mention the minimum informative subset of 
SNPs, which is defined as a subset S of SNPs, of rnini- 
mum possible size, such that, projecting the data over 
the SNPs in S, each genotype in 55, is different from 
each genotype in SH. In this case, it is possible that 
a diagnostic test for the disease could be limited to 
checking the SNPs in S. In a slightly different ver- 
sion of this problem, all the projected genotypes are 
required to be different from each other. If there are 
no ambiguous genotypes in the data, then this ver- 
sion is easily shown to be the NP-hard minimum test 
set problem (problem [SP96] in Garey and Johnson 
1979) that is solvable by a reduction to the set cover- 
ing problem. 

The haplotype tagging problem is to pick a subset 
of SNP sites such that the state of those SNP sites 
specifies the full haplotype. This has received a lot of 
attention from biologists lately, and picking a smallest 
such set of tag sites can be solved by set covering 
methods. This computation is practical for the sizes 
of current data sets. 

4. Genome Rearrangements - 

4.1. Introduction 
With the large amount of genomic data that have 
become available in the past decade, it is now pos- 
sible to try and compare the genomes of different 
species to find their differences and similarities. This 
is a very important problem because, when develop- 
ing new drugs, we typically test them on mice before 
humans. But how close is a mouse to a human? How 
much evolution separates the two species? 

Although there are very effective algorithms for 
comparing two DNA sequences, no such general al- 
gorithm exists for comparing two genomes. (One 
exception is MUMmer Delcher et al. 1999, 2002; 
which is based on sequence alignment, using an 
advanced implementation of suffix trees Kurtz 1999.) 
In principle, one could consider a genome as a 
very long string (3 billion letters in humans) and 
use the sequence alignment algorithm, but there are 
two good reasons for not doing this. First, the time 
required would be very large, even for the low- 
degree polynomial alignment algorithm. Second, and 
more importantly, the model of sequence alignment 
is inappropriate for genome comparisons, where dif- 
ferences should be measured not in terms of inser- 
tions/deletions/mutations of single nucleotides, but 
rather rearrangements of long DNA regions, which 
occurred during evolution. 

Consider the following example. Using sequence 
comparison, it is almost impossible to find a similarity 
between the two sequences 

s, = GGAATGGTTTCACTTCCC 

s, = GGCCCTTCACTTTGGTAA. 

However, a single event explains how the second 
sequence is related to the first: s, can be obtained by 
reversing s,, except for the first two letters. Revers- 
ing part of a sequence is one of the many evolution- 
ary events possible, by which long chunks of DNA 
are moved around in a genome. These events happen 
mainly in the production of sperm and egg cells (but 
also for environmental reasons), and have the effect 
of rearranging the genetic material of parents in their 
offspring. When such mutations are not lethal, after a 
few generations they can become stable in a popula- 
tion. In this case, we talk of speciation, meaning that a 
new species was derived from another. 

The main evolutionary events known are deletions, 
duplications, transpositions, inversions, and translo- 

-cations. These events affect a long fragment of DNA 
on a chromosome. In a deletion the fragment is sim- 
ply removed from the chromosome. A duplication 
creates many copies of the fragment, and inserts 
them in different positions, on the same chromosome. 
When an inversion or a transposition occurs, the frag- 
ment is detached from its original position and then is 
reinserted, on the same chro&oso&e. In an inversion, 
it is reinserted at the same place, but with opposite 
orientation than it originally had. In a transposition, it 
keeps the original orientation but ends up in a differ- 
ent position. Finally, a translocation causes a pair of 
fragments to be exchanged between the ends of two 
chromosomes. Figure 6 illustrates these events, where 
each string represents a chromosome. 

Because evolutionary events affect long DNA re- 
gions (several thousand bases), the basic unit for com- 
parison is not the nucleotide, but rather the gene. In 
fact, the computational study of rearrangement prob- 
lems started after it was observed that several species 
share the same genes (i.e., the genes have identical, 
or nearly identical, DNA sequences), however differ- 
ently arranged. For example, most genes of the mito- 
chondrial genome of Brassica oleracea (cabbage) are 
identical in Brassica campestris (turnip), but appear in 
a completely different order. Much of the pioneering 
work in genome rearrangement problems is due to 
Sankoff and his colleagues (beginning with Sankoff 
et al. 1990). 

The general genome comparison problem is as 
follows: 

Given two genomes (i.e., two sets of sequences of 
genes) find a sequence of evolutionary events that, 
applied to the first genome, turn it into the second. 
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CATTttataggttagCTTGTTAATCTC 

1 (Deletion) 

I CATTCTTGTTAATCTC 

TGTTAcgttcTTGTTAAGGTTAG 

1 (Duplication) 
TGTTAcgttcTTGTcgttcTAAGGcgttcTTAG 

ATTCTTgttttataGGCTAGATCCGCCATGGA 

1 (Transposition) 
ATTCTTGGCTAGATCCGCgttttataCATGGA 

ATTCTTGTTttataggttagAATTTG 

1 (Inversion) 
ATTCTTGTTgatt ggat att AATTTG 

CTGTGGATgcaggacat TCATTGAaataa 

1 (Translocation) 
CTGTGGATaataa TCATTGAgcaggacat 

li Figure 6 Five Types of Evolutionary Events 

Under a general parsimony principle, the solution 
sought is the one requiring the rnhimum possible 
number of events. A weighted model, based on the 
probability of each event, would be more appropriate, 
but these probabilities are very hard to determine. It 
is an open problem in genome comparison to develop 
sound mathematical models and algorithms for the 
general version of the problem. In fact, in the past 
decade, people have concentrated on evolution by 
means of some specific event alone, and have shown 
that these special cases can be already very hard to 
solve (Bafna and Pevzner 1996, 1998; Caprara 1999b; 
Caprara et al. 2001; Kececioglu and Ravi 1995; Kece- 
cioglu and Sankoff 1995). 

The two events that have received more attention 
are inversions and transpositions, so we will focus 
on them for the remainder of this section. Inversions 
are considered the predominant of all types of rear- 
rangements. For historical reasons, they have become 
known as reversals in the computer science commu- 
nity. Because reversals and transpositions are single- 
chromosome rearrangements, what we call genome, 
from here on, has to be understood as a particular 
chromosome of a given genome. Two genomes are 
compared by looking at their common genes. After 
numbering each of n common genes with a unique 
label in {I , .  . . , n], each genome is a permutation 
of the elements (1,. . . , n]. Let rr = (rrl, . . . , 7rn) and 
u = (ul, . . . , un) be two genomes. By possibly relabel- 
ing the genes, we can always assume that u = a := 
(12, . . . , n), the identity permutation. Hence, the prob- 

A reversal is a permutation pii, with 1 I i < j 5 n, 
defined as 

p = ( l  . .  
'I 

reversed 

Note that by applying (multiplying) pij to a permuta- 
tion n-, one obtains 

i.e., the order of the elements T,, . . . , rrl has been 
reversed. Let 3 = {pZl: 1 5 i < j 5 n]. 3 is a set 
of generators of S,, the set of the n! permutations 
of {1, . . . , n}. That is, each permutation rr can be 
expressed (nonuniquely) as a product aplp2 . . - pD 
with p' E 3 for i = 1,. . . , D. The minimum value D 
such that aplp2 . . pD = rr is called the reversal dis- 
tance of n, and denoted by d R ( ~ ) .  Sorting by reversals 
(SBR) is the problem of finding dR(rr) and a sequence 
p1p2 , . . . , pd~(.rr) that satisfies ap1p2. . . pD = rr. 

The above formulation does not consider the fact 
that a reversal not only changes the order of some 
genes, but it causes the nucleotide sequence of each 
reversed gene to be complemented. To account for 
this situation, a genome can be represented by a 
signed permutation, i.e., a permutation in which each 
element is signed either "+" or "-." For a signed per- 
mutation, the effect of a reversal is not only to flip 
the order of some consecutive elements, but also to 
complement their sign. For instance, the reversal pZ4 
applied to the signed permutation (+1 -4 +3 -5 +2) 
yields the signed permutation (+1 +5 -3 +4 +2). 
Signed sorting by reversals (SSBR) determines the min- 
imum number of reversals that turn a signed per- 
mutation rr into (+1 +2 - .  . +n). Note that, for 
signed permutations, reversals of a single element are 
allowed. 

The problem of signs does not arise in transpo- 
sitions, where the direction of each gene is always 
preserved. A transposition is a permutation defined 
by i, j,k, with 15 k < i 5 j i n, as 7,]k = ( l - . . k  - 1, 
i i + l . . . j ,  k . . . i  - l , j  + l . . . n )  . Applying to 
rr has the effect of moving the strip of elements 
rr, - .  . rr, from their position to the position irnrnedi- 
ately before rrk. Let 9 be the set of all possible trans- 
positions. 9 is a set of generators of S,, so that each 
permutation rr can be expressed (nonuniquely) as a 
product ar1r2. .  . rD with r' E 9 for i = 1, . . . , D. The 
minimum value D such that aplp2.. . pD = .rr is called 
the transposition disfance of rr, and denoted by dT(r). 
Sorting by transpositions (SBT) is the problem of find- 
ing dT(7r) and a sequence r1r2, . . . , rd~( .rr )  that satisfies 
a p l p 2  . . . pD = m. 
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4.2. Sorting by Reversals 
The study of sorting by reversals began with its 
unsigned version. The first exact branch-and-bound 

suitable for only small problems (n 5 30), is 
due to Kececioglu and Sankoff (1995). A major step 
towards the practical solution of the problem was 
made by Bafna and Pevzner (1996), who, building on 
the previous results by Kececioglu and Sankoff, found 
a nice combinatorial characterization of r in terms of 
its breakpoints. A breakpoint is given by a pair of adja- 
cent elements in r that are not adjacent in a-that is, 
there is a breakpoint at position if if IT, - rl-,I > 1. 

The analysis of breakpoints provides the key to 
bounding dR(r)  effectively. Let b ( r )  denote the num- 
ber of breakpoints. Then, a trivial bound is dR(r )  3 
rb(r)/21 because a reversal can remove at most two 
breakpoints, and a has no breakpoints. However, 
Bafna and Pevzner showed how to obtain a sigrufi- 
cantly better bound from the breakpoint graph G(r), 
which has a node for each element of r and edges 
of two colors, say red and blue. Red edges connect 
elements T, and q-, for each position i at which 
there is a breakpoint, and blue edges connect h and 
k whenever Ih - kl = 1, but h and k are not adjacent 
in r .  G(r) can be decomposed into a set of edge- 
disjoint color-alternating cycles. Let c ( r )  be the max- 
imum number of edge-disjoint alternating cycles in 
G(r). Bafna and Pevzner proved the following theo- 
rem: For every permutation r ,  d,(r) 2 b(r) - c(r).  

The lower bound b ( ~ )  - C(T) turns out to be very 
tight, as observed first experimentally by various 
authors and then proved to be almost always the 
case by Caprara (1999a), who showed that determin- 
ing c ( r )  is essentially the same problem as deter- 
mining dR(r)  (Caprara 199913). Moreover, Caprara 
proved both problems to be NP-hard, thus settling a 
long-standing open question about the complexity of 
unsigned SBR. SBR was later shown by Berman and 
Karpinski (1999) to be APX-hard as well. The best 
approximation algorithm known is by Berman et al. 
(2002) and achieves a ratio of 1.375. 

The NP-hardness of computing c ( r )  may seem like 
a major drawback against the use of the lower bound 
b ( r )  - c( r )  for the practical solution of SBR. How- 
ever, this is not the case. In fact there is an effective 
integer linear programming (ILP) formulation to find 
c ( r )  and for any upper bound cl(r)  to c(r), also the 
value b(r) - cl(r) is a lower bound to dR(r).  Based 
on the aforementioned ILP formulation, a good upper 
bound to c ( r )  is obtained by LP relaxation. The fol- 
lowing is an ILP formulation to find c(T). 

Let '33 denote the set of all the alternating cycles 
of G(r) = (V, E), and for each C E % define a binary 

variable xc. The following is the ILP formulation of 
the maximum cycle decomposition: 

E x , :  ~ x c ~ l , V e ~ E , x c ~ { O , l ] , V C ~ ~  . (1) 
CEO Cae I 

A good upper bound to c ( r )  can be obtained by LP 
relaxation. Based on these ideas, Caprara et al. (2001) 
presented a branch-and-price algorithm whose latest 
version can routinely solve, in a matter of seconds, 
instances with n = 200 elements, a large enough size 
for all real-life instances available so far. Note that 
no effective ILP formulation has ever been found for 
modeling SBR direttly. Finding such a formulation 
constitutes an interesting theoretical problem. 

The LP relaxation of (1) has an exponential number 
of variables, but it can be solved in polynomial time 
by column-generation techniques. Solutions of some 
non-bipartite, perfect matching problems are used to 
price the variables. 

Today, SBR is regarded as practically solved, being 
one of the few NP-hard problems for which a 
(worst-case) exponential algorithm (namely, branch- 
and-price) is fairly good on most instances. The situa- 
tion is even better as far as the optimization of SSBR is 
concerned. In fact, with a deep combinatorial analysis 
of the cycle decomposition problem for the permu- 
tation graph of a signed r, SSBR was shown to be 
polynomial by Hannenhalli and Pevzner (1995). This 
result came as a surprise, at a time when unsigned 
SBR was still an open problem, and the two ver- 
sions of the problem were expected to have the same 
complexity. The original O(n4) algorithm of Hannen- 
halli and Pevzner for SSBR was improved over the 
years to an O(n2) algorithm for finding the optimal 
solution (Kaplan et al. 1997) and an O(n) algorithm 
(Bader et al. 2001) for finding the signed reversal dis- 
tance (but not a sequence of reversals that achieve this 
distance). 

The other evolutionary events in Figure 6 do not 
have such a rich theory. The analogous problems for 
sorting by transpositions or translocations are partic- 
ularly interesting, and there are no results compara- 
ble to the algorithmic framework built on breakpoint 
analysis. Thus, this provides another opportunity to 
advance this field. Once we can deal with each of the 
evolutionary events individually, we must then con- 
sider combinations. 

While sorting by reversals is well developed, there 
is an open problem of another kind, which concerns 
reversals by a stochastic process. That is the subject of 
the next section. 

4.3. Expected Reversal Distance 
Because -the optimization of the reversal distance 
has become a well-understood problem, research has 
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shifted to the study of the expected reversal distance, 
a problem for which there has been no similar success. 
In a probabilistic model of evolution, one can assume 
that each reversal is a random event, and evolution 
follows a random walk in a graph having a node 
for each possible genome. Define the reversal graph 
as the graph GR = (S,, E) in which there is an edge 
between each pair of permutations n-, a such that 
a can be obtained from n- by a reversal. SBR corre- 
sponds to the shortest-path problem in GR. If n- and p 
represent two genomes, dR(rp-l) gives a lower bound 
to the number of evolutionary events that occurred in 
the evolution of n- and p from a common ancestor. 

However, the actual path followed by evolution 
does not necessarily correspond to the shortest path, 
and a more reliable scenario can be based on a proba- 
bilistic analysis. Assume each reversal can occur with 
the same probability for a permutation. Starting at 
the identity permutation (denoted a), consider a ran- 
dom walk in GR in which, at each step, an edge 
is chosen with uniform probability among all edges 
incident on the current node. Let Yk be a random 
variable representing the reversal distance of the per- 
mutation obtained after k steps of the random walk. 
Perhaps the most sigruficant open problem for sorting 
by reversals, both signed and unsigned, is to deter- 
mine the expected value E[Yk], or tight lower and 
upper bounds. 

The Cayley graph (Babai 1991) of a group % with 
respect to a set Y of generators is a graph with ver- 
tex set '3 and edges { g ,  gr}  (g E 3, r E y) .  Because 
the set of all reversals is a set of generators of S,, 
the graph GR is a (non-bipartite) Cayley graph. For 
this graph, the probability of ending at node v after k 
steps of a random walk approaches the random dis- 
tribution, as k increases. In Caprara and Lancia (2000), 
it is shown that O((n log n)O(l)) random reversals are 
enough to end at a practically random permutation. 
Because Bafna and Pevzner (1996) show that for a 
random permutation n-, E[dR(~)]  2 (1 - 4/log n)n, the 
same bound holds for E[Yk], with k large enough. 
However, genomic permutations should not be ran- 
dom, and hence it is important to derive a similar 
bound for E[Yk] for small values of k. A first step in 
this direction was achieved by considering another 
random variable, Xk, the number of breakpoints in an 
unsigned permutation after k uniform random rever- 
sals, that is correlated with Yk. Caprara and Lan- 
cia (2000) proved that E[Xk] = (n - 1)(1 - ((n - 3)/ 
(n - l))k) and have shown how this value can be used 
to derive a better (i.e., closer to the true sequence of 
events) solution than the optimal SBR solution, when 
dR I n/2. These results were generalized to a whole 
class of genomic distances, for signed and unsigned 
permutations and circular genomes as well, in Wang 
and Warnow (2001). 
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5. Protein Structure Prediction 
and Recognition 

Proteins are complex biological macromolecules that 
are composed of a sequence of amino acids, which 
is encoded by a gene in a genome. Proteins are key 
elements of many cellular functions. Fibrous pro- 
teins contribute to hair, skin, bone, and other fibrous 
parts. Membrane proteins stay in a cell's membrane, 
where they mediate the exchange of molecules and 
information across cellular boundaries. Water-soluble 
globular proteins serve as enzymes that mediate and 
catalyze most of the biochemical reactions that occur 
in cells. 

There are 20 different amino acids specified in the 
genetic code. Amino acids are joined end-to-end dur- 
ing protein synthesis by the formation of peptide 
bonds (see Figure 7). The sequence of peptide bonds 
forms a "main chain" or "backbone" for the protein, 
off of which project the various side chains. 

The functional properties of proteins depend upon 
their three-dimensional structures. Understanding 
and predicting these structures has proven quite 
daunting, despite the fact that the structures of thou- 
sands of proteins have been determined (Berman 
et al. 2000). Unlike the structure of other biological 
macromolecules (e.g., DNA), proteins have complex, 
irregular structures. Our focus in this section is on 
globular proteins, which exhibit a specific native state. 

The sequence of residues in a protein is called its 
primary structure. A variety of structural motifs have 
been identified for proteins. Proteins exhibit a vari- 
ety of secondary structure motifs that reflect common 

residue (or side chain) 

Amino 
end 
(+) Carboxvl 

end - 1 o[ 
water goes away 

peptide bond 

Figure 7 The Peptide Bond Joining Two Amino Acids When Synthesiz- 
ing a Protein 
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structural elements in a local region of the polypep- 
tide chain: a-helices, P-strands, and loops. Groups of 
secondary structures usually combine to form com- 
pact globular structures, which represent the three- 
dimensional tertiary structure of an entire protein. 
The central dogma of protein science is that the 
primary structure determines the tertiary structure. 
Although this is not necessarily true in all cases (e.g., 
some proteins require chaperone proteins to facilitate 
their folding process), this dogma is tacitly assumed 
for most of the computational techniques used for 
predicting and comparing the structure of globular 
proteins. 

In the following sections we consider problems 
related to the prediction and comparison of protein 
structures. Knowing the structure of a protein provides 
a basis for idenhfying the protein's function, and pro- 
tein structures are necessary for many computational 
drug docking techniques. (Although it is an impor- 
tant research topic, we shall not explore drug docking 
problems here, except to say that it is the binding 
of a small molecule, called a ligand, like a drug, to 
some site on a protein. There are many interesting 
open optimization problems, such as the location of 
the docking site, which are described in Nussinov 
et al. 2002.) Because of its importance, a variety of 
techniques have been developed to predict protein 
structure, but only a few are based on mathemati- 
cal programming. We summarize efforts to character- 
ize the computational complexity of protein structure 
prediction, and we describe one approach in detail. 

Protein-alignment techniques can be used to com- 
pare and predict protein structures. We describe 
recent work on protein alignment with contact maps, 
which can be applied to assess the accuracy of pro- 
tein structure prediction methods (given known pro- 
tein structures). For a sense of scale, the number of 
amino acid residues in a protein ranges from about 50 
to 2500. As a practical matter, instances in the range 
100-500 are interesting enough to be studied because 
we do not understand the function of many of those 
proteins. 

5.1. Protein Structure Prediction 
One approach to protein structure prediction is to 
determine the position of a protein's atoms so as 
to minimize the total free energy (Byrd et al. 1996, 
Neumaier 1997). In practice, accurate energy function 
calculations cannot be used for protein structure pre- 
diction, even for proteins with as few as 50 residues, 
so approximate models are commonly used. Even 
these simplified models are complex, and they fre- 
quently have many local minima. Here we consider a 
lattice model of protein folding based on the follow- 
ing biological simplification due to Dill (1985) (also 
see Lau and Dill 1989, Dill et al. 1995). Amino acids 

can be hydrophobic, which means that they do not 
do well in water, or hydrophilic, which means that 
they do. Using this simplification, optimization mod- 
els have been developed during the past decade that 
seek to maximize interactions between adjacent pairs 
of hydrophobic side chains. The adjacency is defined 
on a lattice of points that can be regarded here as a 
discrete approximation, or grid, in space. The ratio- 
nale for this objective is that hydrophobic interactions 
contribute a sigruficant portion of the total energy 
function. Roughly, this objective favors conformations 
that have the hydrophobic amino acid residues clus- 
tered on the inside, covered by the hydrophilic ones. 

Lattice models of protein folding have provided 
valuable insights into the general complexity of 
protein structure prediction problems. For example, 
protein structure prediction has been shown to be 
NP-hard for a variety of lattice models (Atkins and 
Hart 1999, Berger and Leighton 1998, Crescenzi et al. 
1998, Hart and Istrail 1997b). This lends credibility 
to the general assumption that protein structure pre- 
diction is an intractable problem. These results are 
complemented by performance-guaranteed approx- 
imation algorithms that run in linear time. These 
results show that near-optimal protein structures can 
be quickly constructed, and they can be generalized 
to simple off-lattice protein models (Hart and Istrail 
1997a). 

Most of the complexity analysis and algorithm 
design has focused on variations of Dill's hydro- 
phobic-hydrophilic model. This is generally called the 
HP model, where P is used to denote hydrophilic 
because those amino acids are also polar. The HP 
model is one of the most studied simple (globu- 
lar) protein models. From a computational view, we 
are reducing the alphabet from 20 characters to two, 
where our input sequences are from {H,P)+. The 
recent results of Andorf et al. (2002) explore the range 
of alphabet size, from 2 to 20, taking other properties 
of amino acids into consideration. 

In addition to providing insight into the theoreti- 
cal computational complexity of protein structure pre- 
diction, the HP model has also been used to assess 
and evaluate many different optimization techniques 
applied to this problem. A wide range of heuris- 
tics have been applied to find optimal HP struc- 
tures, especially evolutionary algorithms (Khimasia 
and Coveney 1997; Krasnogor et al. 1998a, b; Patton 
et al. 1995; Piccolboni and Mauri 1998; Rabow and 
Scheraga 1996; Unger and Moult 1993a, b). Addition- 
ally, exact methods for protein structure prediction 
in the HP model have been developed using con- 
strained enumeration techniques (Yue and Dill 1993, 
1994) and logic programming (Backofen 1999). Solv- 
ing HP problems with either heuristic or exact meth- 
ods has proven quite challenging, and none of i-l-~ese 
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methods is able to scale robustly to sequences of hun- 
dreds of amino acids. 

Thus, there appears to be an opportunity for math- 
ematical programming techniques to obtain deeper 
insight into these problems. These insights can be bio- 
logical, or they can be exploited algorithmically to 
solve problems of practical size. We begin with a sim- 
ple ILP model. 

A residue's neighbor (successor or predecessor in 
the sequence) must be assigned to a neighboring 
grid point (exactly one unit away). Mathematically, 
if the assigned coordinates of two neighbors of the 
sequence are (xi, y, , zi) and , yi+l , zifl), this must 
satisfy: 

Ixi - xi+l I + I yi - Yi+l I + Izi - zi+l I = (a) Backbone 

The 2D counterpart is easier to visualize. Figure 8(a) 
shows a grid for nine acids and the backbone of a 
protein. The open circles are hydrophilic acids, and 
the filled circles are hydrophobic acids. In this state, 
the number of hydrophobic contacts is three: (1,2), 
(5,6), and (6,7) are hydrophobic neighbors. Figure 8@) 
shows a fold, adding two to its number of hydropho- 
bic contacts, shown by the dotted line connecting 
them. (The hydrophobic contacts along the backbone 
are often omitted in HP models, because any confor- 
mation always includes these contacts. However, we 
include them here to simpllfy the statement of our 
ILP model.) 

The amino acid residue sequence is denoted 
(a,, . . . , a,), and the set of lattice points is 3 = 
{I, 2,. . . , n2}, such that the coordinates are of the 
form: 

and for p E Y. 

I Define the neighborhood of a point by 
I 

Let vip be a binary decision variable with the fol- 
lowing meaning: 

v = ( 1 if acid ai is assigned to point p, 
lP 0 otherwise. 

The following constraints give us the correspondence 
we seek. 

(I) Every residue must be assigned to a point: 

4 

. . 
3 

. . 

2 j j j residue #1 
, ' I  
8 1 '  
I "  

1 : : :  
I : :  

O 1 2 3 4 5 6 7 8 X  

(b) Fold With Five Hydrophobic Contacts 

Figure 8 Protein in a 9 x 9 Lattice 

(111) Sequence order must be preserved: 

C vi+,,, 2 vip for i = l ,  ..., n-1, ~ E Y  
~ E J V ( P )  

C vi-,,, 2 v,, for i = 2  ,..., n, p c Y .  
qsJV(p) 

Now we need to count the number of hydrophobic 
contacts for any assignment, v, with binary hydropho- 
bic contact variables. Define 

1 if there are hydrophobic residues 
assigned to p and q, 

0 otherwise, 

def C v i p = l  for i = l ,  ..., n. for (p, q) E 9 = {(p, q): q E .N(p)} (=domain of h). 
~ € 9  The following constraints provide part of the assur- 

(11) No point can be assigned more than one ance that h is determined appropriately. 

residue: (N) 
n 

C v,, 5 1 for p E Y. hpq 5 C v, and hpq 5 C viq for (p, q) E 9, 
i=l is% is% 
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I where X is the set of indices of hydrophobic acids. 
Each sum on the right is zero or one for any assign- 
ment, v. If either is zero, that forces hpq = 0, so we 
do not allow this to "score." That is what we want: 
do not score any hydrophobic contact if the neighboring 
points are not both hydrophobic. If both right-hand sides 
are one, that means v, = 1 for some residue i that is 
hydrophobic; and, v,, = 1 for some other residue k 
that is also hydrophobic. That allows hpq = 1. 

The complete ILP model is given by the following: 

max hpq: (1)-(W) and hpq, vg E {O, l} 'ti, p, q. 
(P, q)~g 

The maximization takes care of determining the 
hydrophobic contact scoring variables (h) correctly. 
If the assignment allows hpq = 1, that is the value it 
will be in an optimal solution. Although this model is 
correct, we consider several ways in which it can be 
improved. 

We must eliminate translation, rotation, and reflec- 
tion symmetries because branch-and-bound does not 
understand and exploit the geometry of this problem. 
It will see a symmetric solution as an alternative opti- 
mum, even though it is the same fold. This means that 
the search tree will be huge because it will include 
paths to the symmetric solutions that it cannot close. 
Fortunately, there is a simple fix to avoid translation 
symmetries: assign some acid, say m, to some point, 
say p,. (We have found it effective to fix the middle 
acid to the middle of the lattice.) To do this, we sim- 
ply add the constraint vVm = 1. 

The complete lattice is now reduced by half because 
not every point is reachable. For example, a,,, must 
be at one of the four points neighboring p,. Letting 
YR denote the set of reachable points, this reduces the 
neighborhood to N(p)={q€YR: Ixp-xqI+lyp-yqI 51). 
This carries to the domain of h: '3= {(p, q): peYR, 
q EN(P)}. We point this out because other domain 
reductions are possible, and we continue to use N(p) 
and 9 with the understanding that they are the 
reduced sets. 

We now consider the effect of rotation and reflec- 
tion symmetries. Note that we can rotate any fold 
about the middle to put a, into some quadrant, say 
quadrant 3. Then, we can reflect this rotated fold 
about the line y = x to put a, into the half-quadrant. 
The following constraint eliminates these symmetries: 

This region is illustrated in Figure 9. Not all symme- 
tries can be eliminated at the outset, and Backofen 
(1999) presents rules that deal with new symmetries 
that arise during branch and bound. 
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Figure 9 Region Restricting a, to Eliminate Some Symmetric Folds 

We now consider a different formulation by adding 
new variables: 

I 1 if vip = vi+,, = 1, 
Eipq = 0 otherwise 

for i = 1, . . . , n - 1, (p, q) E 9. In words, E describes a 
pair of assignments: Its value is 1 if, and only if, a, is 
assigned to point p and its successor, a,,,, is assigned 
to the neighboring point, q. A potential improvement 
comes from reformulating the sequence-preserving 
constraints. 

It is useful to think of the lattice as a network whose 
nodes are the reachable points and whose edges are 
links with neighbors. Then, we can think of Eirq as 
flow from i to i + 1 across the edge (p, q), as depicted 
in Figure 10. We can relate the assignment variables 
to these flow variables as follows: 

inflow: v,, = C Ei-l,qp for i=2, .. . , n, p E YR 
q€JV(p) 

b~kflow: vip p Eipq + Ei-,, , for i = 2, . . . , n, (p, q) E 9. 

The outflow constraint says that if a, is assigned 
to point p (v, = I), its successor must be assigned 
to some neighbor. Conversely, if a, is not assigned to 
point p (vZp = 0), all of the associated flow variables 
must be zero. The inflow constraint says that if a, 
is assigned to point p, its predecessor (a,-,) must be 
assigned to some reachable neighbor. Conversely, if a, 
is not assigned to point p, all of the associated flow 
variables must be zero. The backflow constraint says 
that if a, is assigned to point p, either its successor 
or predecessor is assigned to a neighbor (q), but not 
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Figure 10 Flow Variables (E,,,) Added to Model 

both (to the same neighbor). Conversely, if ai is not 
assigned to point p, the two flow variables are forced 
to be zero (but this is not an additional constraint 
since the outflow and inflow constraints force this). 

THEOREM 5.1. I f  (v, E) satisfies theflow constraints, v 
satisfies the sequence-order-preserving constraints. 

PROOF. Here the "sequence-order-preserving con- 
straints" are (III). The backflow and outflow con- 
straints yield: 

for i = 1, . . . , n - 1. Similarly, the backflow and inflow 
constraints yield 

for i=2,  ..., n. 
The flow constraints ensure that the backbone 

sequence is preserved, so we drop the original order- 
preserving constraints (111). 

The complete, revised formulation is 

TP': max C C hpq:vip, E ipq~{O, l ) ,  
P E ~ R  ~ ~ J V ( P )  

Assignment: C nip = 1, C vip 5 1, 
. P i 

Flow: vip = C Eipq 
q W p )  

= C Ei-l,qp, Vip>-Eipq+Ei-l,qp, 
q WP) 

Scoring limits: hpq 5 C vip, hpq 5 C viq, 
i ~ %  ie% 

(Domain restrictions and boundary conditions are as 
in the original IP.) 

Theorem 5.1 shows that every 0-1 solution to IP' 
corresponds to a 0-1 solution to IP. It is not difficult to 
prove the converse, so IP and IP' have the same space 
of 0-1 assignments and yield the same objective value 
over those assignments. Theorem 5.1 suggests that IP' 
is sharper than IP, but we think that the LP relaxation 
of IP' has many more extreme points, so whether this 
flow formulation is computationally better than the 
simpler model (IP) requires further study. 

5.2. Contact Map Alignment 
One approach to understanding a new protein's func- 
tion is to see if it is similar to some known protein. 
One measure of similarity, which is described here, 
uses knowledge of the structure of both proteins (e.g., 
the structures of known native states). 

The contact map of a protein is a graph with a node 
for each amino acid residue and an edge for each pair 
of non-adjacent residues whose distance is within a 
given threshold. The distance between two residues 
can be defined, for example, as the smallest Euclidean 
distance between any pair of atoms in the residues. 
Given contact maps for two proteins, GI = [Vl, El] and 
G2 = [V,, E2], a similarity measure is the relative size 
of the maximal subgraphs that are isomorphic while 
preserving their backbone sequences (Goldman et al. 
1999). 

We illustrate this similarity metric in Figure 11. The 
first protein has eight residues and the second protein 
has ten. The alignment shows the residues selected in 
the subgraphs (nodes 1, 2, 4, 5, 6, 7, and 8 from V1, 
and nodes 1, 2, 3,5, 7, 9, and 10 from V,). The linear 
order is preserved by associating 1-1, 2-2, 4 3 ,  5-5, 
6-7, 7-9, and 8-10, and the dark edges illustrate the 
isomorphic edges in each contact map. These edges 
satisfy the condition that their endpoints are associ- 
ated. For example, the edge (1, 4) in El corresponds 
to edge (1, 3) in E2 because of the node associations 
1-1 and 4 3 .  

Now let us formulate the contact map optimization 
(CMO) problem as a 0-1 IP. We define xi] = 1 iff i E Vl 
is associated with j E V,, and we define y(r,k)(l,l) = 1 
iff edges (i, k) E El and (j, I )  E E, are selected. The 
objective of CMO is to maximize C y([, k)(l, 

The selected edges must have their endpoints asso- 
ciated, so 

y ,  ( j ,  1) = 1 . X .. = Xkl = 1 , 'I 

which we express with the inequalities: 
Restrict a,: C vlp = 1 (Q is 1/2 quadrant 3), 

PEQ 

Fix middle: vWm = 1. for (if k) €El, (j, 1)  €E2. 
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Figure 12 Three Associations That Are Pairwise Crossings 

Figure 11 Example Contact Map Alignment With Isomorphic Sub- 
graphs With Five Edges (Lancia et al. 2001b) 

The xij associations must be unique, so 

C x i j s l , V j ~ V ,  and x x i j s l , V i ~ V 1 .  
ieVl 16vz 

These are the usual assignment limits: At most one 
node in one graph can be associated with a node in 
the other graph. Finally, at most one of the two asso- 
ciations that cross is allowed, so we have 

xij+x,,il for l s i t k s l V I I  and l ~ l < j ~ J V 2 1 .  

Here is the complete formulation: 

Y(i,k)(j,l) 5 ~ i j  and Y(i,k)(j,g 5 xkl for (i, k) E El, ( j ,  1) E E2 

E x i j  5 1 for jcV2, 
ieV, 

E x i j  s 1 for i€V1, 
ievz 

xij+xklsl  for l s i < k s ( V l (  and l ~ l < j p J V , I .  

This formulation can be decomposed into x and y 
variables, from which we derive valid inequalities on 
the x problem. Define 

The constraints in this formulation define an indepen- 
dent set in a related graph. 

This observation can be used to strengthen the IP 
for CMO. In particular, if we have three or more pair- 
wise crossing associations, their exclusion inequalities 
can be strengthened. For example, the associations 
shown in Figure 12 give the inequalities 

However, these can be replaced by the stronger 
inequality: 

x,,+x, +x,, 51. 

Both systems have the same 0-1 solutions: At most 
one of the three associations can be made, to the 
exclusion of the other two. However, the one inequal- 
ity is stronger because it has a smaller set of frac- 
tional solutions. In particular, the first system admits 
(1/2,1/2,1/2), which violates the second system. 

The linear programming relaxation (LPR) of this 
problem has some surprises. Figure 13 shows two 
contact maps with six residues. The graphs are iso- 
morphic, so the optimal alignment selects all eight 
pairs of edges. One might think the LPR would be 
integer-valued, but the opposite is true. 

The fractional solution to this example has x ,  = 1/6 
for all values, except x, = x,, = 1/3. These assign- 
ments give nearly the least information possible by 
having the fractional values be nearly equal. The 
crossing constraints are satisfied because they admit 
any pair of assignments whose sum does not exceed 
one; in fact, none of the crossing constraints is binding 
in the fractional solution. 

Y(x) = {(i, j, k, 1): (i, k) E El, ( j ,  1) E E2, 

and x,] = xk, = I}. 

Then, for any (fixed) x, the optimal choice of y is given 

1 if (i, j, k, 1) E Y(x), 
0 otherwise. 

Thus, we can reformulate the CMO problem as 

Figure 13 Isomorphic Contact Maps 
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The solution does not change if any 3-, 4-, 5-, or 
6-cliques are added because their sums are still less 
than one. We can, however, extend the clique inequal- 
ities beyond six variables by including touching as a 
crossing. Start with the 6-clique inequality: 

We can add x15 to this because it crosses all lines and 
touches x16 (which is a violation). In fact, we have the 
following maximal, extended clique inequality: 

This eliminates the current fractional solution. The 
technique for finding this maximal inequality is given 
by Lancia et al. (2001b). 

6. - Epilogue 
Most of the problems we described are NP-hard, 
so it is unlikily that anyone will produce a prac- 
tical algorithm that guarantees an optimal solution 
within a realistic amount of time. Still, exact meth- 
ods are important because (a) for some problems 
they are applicable to practical problem instances, and 
(b) they can be used to benchmark fast heuristics 
on specific problems. The multiple sequence align- 
ment problem, for example, has polynomial com- 
plexity when the number of sequences to be aligned 
is fixed. More importantly, new knowledge of the 
underlying science can reveal that the dimension of a 
problem is much less than we are using. For exam- 
ple, protein folding rnigbt depend on key subse- 
quences of amino acids, rather than on their total 
number. Thus, research is needed to improve general 
branch-and-bound or dynamic programming meth- 
ods by exploiting special problem structure. One must 
also be mindful of the underlying biology, question- 
ing whether we are measuring complexity by the 
right dimension. This underlies the Levinthal Para- 
dox (Ngo et al. 1994), which discusses these points 
in greater detail. The "paradox" is that nature solves 
problems, like protein folding, in seconds (or less), but 
our fastest computers cannot. This raises questions 
about how nature works; it is unlikely that nature 
solves the same problem we pose, and the in-depth 
discussion provided by Ngo et al. (1994) is important 
to read. 

When the dimensionality is too great to guaran- 
tee an exact optimal solution, there are two ap- 
proaches: (1) metaheuristics and (2) approximation 
algorithms. The former is a skillfully guided set of 
rules, often based on some metaphor of nature; the 
latter gives a guarantee of some percentage of optirnal- 
ity. Both have been applied to most of the problems 
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discussed in this paper, but much more is needed. 
There are many opportunities for research into the 
design and analysis of computational methods famil- 
iar to researchers in mathematical programming, com- 
ing from an operations research background. Even less 
has been done with sensitivity analysis and optimiz- 
ing under uncertainty. 

Finally, we remind the reader that the solution 
to these types of combinatorial problems does not 
necessarily mean that the related biological problem 
is solved. In our examples, the mathematical model 
defines an abstraction that emphasizes some par- 
ticular aspects of the underlying biological system. 
For example, many different protein structure predic- 
tion problems have been formulated, each of which 
emphasizes different aspects of the protein folding 
process with different levels of fidelity (e.g., using a 
simple hydrophobic model versus a detailed model 
based on the statistical mechanics of water). Conse- 
quently, the solution to a combinatorial optimization 
problem often leads to stimulating discussions with , 
biologists regarding how these results can be inter- I 
preted within a biological context. Further, these dis- 
cussions often generate new ideas for combinatorial 
formulations that might provide further insight into 
the underlying problem. In our opinion, this dynamic 
interaction with biologists is one of the most produc- 
tive aspects of this research area, making it also one 
of, the most exciting. 

I 
Appendix: Getting Started 
Some light reading about computational biology is pro- 
vided by Karp (2002). A good place to begin a more thor- 
ough study is with Ph.D. theses. These have been care- 
fully reviewed, and the authors have spent a good deal 
of time providing background, perspective, and complete 
references. The authors recommend the theses of Backofen 
(1999), Lancia (1997), and Pedersen (1999). 

For a gentle introduction to the biology, see Brown 
(1999), Hunter (1993). Then, the authors recommend study- 
ing Campbell and Heyer (2002). The number of books on 
computational molecular biology has increased since the 
early entry by Setubal and Meidanis (1997). For the kinds of 
problems described here the authors recommend Pevzner 
(2000) and Clote and Backofen (2000). 

The primary journals and proceedings in this field are as 
follows ('indicates free of cost): 

Bioinformatics http://bioinformatics.oupjournals.org/ 
Silico Biology http://www.bioinfo.de/isb/ 

Journal of Computational Biology http://www.liebertpub. 
com/CMB/defaultl.asp 

tProceedings of the Pacific Symposium on Biocomputing 
http://psb.stanford.edu/ 

Research in  Computational Biology Proceedings (RECOMB) 
http:Nwww.recomb2003.de/ 

Proceedings of the Intelligent Systemsfor Molecular Biology 
(ISMB) http://www.iscb.org/ismb2003/. 
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1 Links to more journals and resources are at the Inter- 
national Society for Computational Biology, http://www.iscb 
.erg/, which also contains links to their symposia pro- 
ceedings. 

The web also contains a wealth of information about 
computational biology, molecular biology, and related top- 
ics. Searching for courses and primers yields greater results 
each year, as universities are presenting preparatory courses 
in the relevant elements of biosciences for the computer sci- 
entist, engineer, or mathematician. Here are some sugges- 
tions for getting started. 

Biology Hypertextbook, from MIT (Dakla et al. 2004) 
This is an ongoing project that started in 1996 and has 

been developed by many MIT faculty and students. It is 
divided into 11 chapters, starting with a chemistry review 
and ending with immunology. If you search the index, 
you will find some untitled modules that indicate work in 
progress. 

Molecular Biology Notebook, from Rothamsted Research 
(Molecular Biology Notebook 2000) 

This contains many online short courses, starting with 
The Beginner's Guide to Molecular Biology, which contains 13  
lessons, beginning with a definition of life and ending with 
molecular engineering. 
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