The Inversion of 2-Step Graphs

HARVEY J. GREENBERG,
J. RICHARD LUNDGREN and JOHN S. MAYBEE

University of Colorado, Boulder

The 2-step graph $S_2(G)$ of a given graph G was introduced by Exoo and Harary. We now solve the inverse problem. That is, given a graph $H = (V, L_H)$ and the class of connected graphs \mathcal{C} we get $C_H = \{G \in \mathcal{C} : S_2(G) = H\}$ and we determine for what H is $C_H \neq \emptyset$. We show that if H has 2 components and $G \in C_H$, then G is bipartite, and for connected H we find equivalent conditions for $C_H \neq \emptyset$. Our work is based upon ideas about relationships between graphs and rectangular matrices which we developed in previous papers.

1. Introduction

In [1] Exoo and Harary defined the 2-step graph of a given graph, showed that every graph G has a limiting 2-step graph L, and determined the structure of L. The 2-step graph $H = S_2(G)$ of a given graph G has the same points as G with two points adjacent in H whenever they are connected by a path of length 2 in G.

Here we are interested in inverting 2-step graphs. That is, given a graph $H = (V, L_H)$ and a class of graphs $\mathcal{G} = \{G = (V, L_G)\}$, find $G \in \mathcal{G}$ such that $S_2(G) = H$, or ascertain that none exists. In particular, we consider the case where $\mathcal{G} = \mathcal{C}$, the set of connected graphs. Let $C_H = \{G \in \mathcal{C} : S_2(G) = H\}$. We determine for what H is $C_H \neq \emptyset$ and characterize C_H for these cases.

First, we show that if H has more than two components, then $C_H = \emptyset$. Next we show that when H has exactly two components, if $G \in C_H$, then G is bipartite. Furthermore, those H satisfying $C_H = \emptyset$ are determined by using Theorem 2 of [3]. Finally, for connected H we find equivalent conditions for $C_H \neq \emptyset$.

Most of our work in this paper uses ideas about relationships between graphs and rectangular matrices developed by the authors in previous papers [2, 3, 4]. Given an $m \times n$ matrix A, we define two sets of points $R = \{r_1, \ldots, r_m\}$ and $C = \{c_1, \ldots, c_n\}$ to represent the rows and columns of A, respectively. The three basic graphs are:
THE INVERSION OF 2-STEP GRAPHS

FUNDAMENTAL BIGRAPH. \(BG \) is a bipartite graph (bigraph) on \(R \) and \(C \). The lines correspond to the nonzeros of \(A \), i.e., \([r_i, c_j]\) is a line in \(BG \) iff \(a_{ij} \neq 0 \).

ROW GRAPH: \(RG \) has point set \(R \). The line \([r_i, r_j]\) belongs to \(RG \) if there exists \(c_j \in C \) such that \([r_i, c_j]\) and \([r_k, c_j]\) are lines of \(BG \).

COLUMN GRAPH. \(CG \) has point set \(C \). The line \([c_i, c_j]\) belongs to \(CG \) if there exists \(r_i \in R \) such that \([r_i, c_j]\) and \([r_i, c_k]\) are lines of \(BG \).

2. PRELIMINARY RESULTS

First we establish some relationships between 2-step graphs and graphs associated with matrices.

Theorem 2.1. Let \(A \) be an \(m \times n \) matrix. Then

\[
S_2(BG(A)) = RG(A) \cup CG(A)
\]

Proof. Let \(R = \{r_1, \ldots, r_m\} \) be the row points and \(C = \{c_1, \ldots, c_n\} \) the column points. Since a path of length 2 in \(BG(A) \) must be of the form \([r_i, c_k, r_j]\) or \([c_i, r_k, c_j]\), row points are not adjacent in \(S_2(BG(A)) \) and column points are not adjacent in \(S_2(BG(A)) \). Furthermore, \([r_i, r_k]\) is a line in \(RG(A) \) iff there exists a path of the form \([r_i, c_k, r_j]\) in \(BG(A) \), and \([c_i, c_j]\) is a line in \(CG(A) \) iff there exists a path of the form \([c_i, r_k, c_j]\) in \(BG(A) \). Hence, \(S_2(BG(A)) = RG(A) \cup CG(A) \).

Observe that if \(G \) is any bipartite graph with sets \(R \) and \(C \) determining the bipartition, then we can construct a binary matrix \(A \) with rows corresponding to the points in \(R \) and columns to the points in \(C \) so that \(BG(A) = G \). Hence, the 2-step graph of any bipartite graph is determined by Theorem 2.1.

For a graph \(G \), let \(A(G) \) denote the adjacency matrix of \(G \). Then \(A(G) \) is symmetric, and if \(G \) is connected and nontrivial, then each row and column of \(A \) has a nonzero entry.

Theorem 2.2. Let \(G \) be a connected graph, \(A = A(G) \), and \(H = S_2(G) \). Then \(H \cong RG(A) \cong CG(A) \).

Proof. If \(G \) has only one point, the result is trivial, so we may assume \(G \) has at least 2 points. Since \(A \) is symmetric, \(RG(A) \cong CG(A) \). Let \(B(A) \) denote the binary matrix obtained from \(A \). Since each row and column of \(A \) has a nonzero, the adjacency matrix for \(RG(A) \) is \(B(AAT) - I \) by Theorem 1 of [4]. Hence \([i, j]\) is an edge in \(RG(A) \) iff the \(i, j \) entry in \(B(AAT) - I \) is 1 iff the \(i, j \) entry in \(AAT \) is \(\geq 1 \). But \(AAT = A \), and the \(i, j \) entry of \(A^2 \) is \(k \geq 1 \) iff there are \(k \) paths of length 2 between \(i \) and \(j \) in \(G \) iff \([i, j]\) is a line of \(H \).

In particular, we consider the binary matrix \(M \) and associate with it the adjacency matrix.
\[A(BG(M)) = \begin{bmatrix} 0 & M \\ M^T & 0 \end{bmatrix} \]

as in [4]. Suppose \(M \) is regular, that is, there are no null rows or columns. Define \(M^TM \) and \(MM^T \) using boolean addition, then,

\[A(S_2(BG(M))) = \begin{bmatrix} MM^T - I & 0 \\ 0 & MM^T - I \end{bmatrix} = A(RG(M)) \begin{bmatrix} 0 \\ 0 & A(CG(M)) \end{bmatrix} \]

Let \(v_i \leftrightarrow v_j \) mean that there exists a path connecting \(v_i \) to \(v_j \) and \(v_i \leftrightarrow v_j \) mean that there exists a simple path with an odd number of points connecting \(v_i \) to \(v_j \). The following lemma will be useful below.

Lemma 2.1. If \(v_i \) and \(v_j \) are points in a graph \(G \in \mathcal{C}_H \) then \(v_i \leftrightarrow v_j \) in \(G \) iff \(v_i \leftrightarrow v_j \) in \(H \).

Proof. Let \(G \in \mathcal{C}_H \). Suppose \(v_i \leftrightarrow v_j \) so that there exist points \(x_h, y_k \) such that \((v_i, x_1, y_1, x_2, y_2, \ldots, x_p, y_p, x_{p+1}, v_j)\) is a path in \(G \). Then, \((v_i, y_1, x_2, \ldots, y_p, v_j)\) is a path in \(H \).

Conversely, suppose \(v_i \leftrightarrow v_j \). Then we can find \(y_l \) such that \(v_i, y_1, y_2, \ldots, y_p, v_j \) is a simple path in \(H \). Since \(G \in \mathcal{C}_H \), there exist points \(x_t \) such that \((v_i, x_1, y_1, x_2, y_2, \ldots, y_p, x_{p+1}, v_j)\) is a path in \(G \) with an odd number of points. If \(x_m = x_n \) for \(m < n \), then we can remove all pairs \((x_m, y_m), (x_{m+1}, y_{m+1}), \ldots, (x_{n-1}, y_{n-1})\) and still have a path in \(G \) with an odd number of points. Hence, \(v_i \leftrightarrow v_j \) in \(G \).

Let us now determine \(\mathcal{C}_G \) when \(H \) is not connected. First we show that \(\mathcal{C}_H = \emptyset \) if \(H \) has more than 2 components.

Theorem 2.3. If \(H \) has more than 2 components, then \(\mathcal{C}_H = \emptyset \).

Proof. Suppose \(\mathcal{C}_H \neq \emptyset \) and let \(G \in \mathcal{C}_H \) and \(v_i, v_j \), with \(v_i \) in different components of \(H \). We will reach a contradiction by showing that \(v_i \leftrightarrow v_j \) or \(v_i \leftrightarrow v_j \) in \(H \). Since \(G \) is connected, \(v_i \leftrightarrow v_j \) in \(G \). By Lemma 2.1 we can't have \(v_i \leftrightarrow v_j \) in \(G \), so we can assume the path is simple of the form \((v_i, x_1, y_1, x_2, y_2, \ldots, x_p, y_p, v_j)\).

Since \(G \) is connected, we can assume \(v_i \leftrightarrow v_j \) in \(G \). Note that if \((v_i, v_j)\) is a line in \(G \), then \(v_i \leftrightarrow v_j \) in \(G \), so by Lemma 2.1, \(v_i \leftrightarrow v_j \) in \(H \), a contradiction. Hence we can assume there is a simple path \((v_i, w_1, w_2, \ldots, w_q, v_j)\).

If the \(w_i \)s are distinct from the \(x_i \)s and \(y_i \)s, then if \(q \) is odd, \(v_i \leftrightarrow v_j \), and if \(q \) is even, \(v_i \leftrightarrow v_j \), so by Lemma 2.1, we have either \(v_i \leftrightarrow v_j \) or \(v_i \leftrightarrow v_j \) in \(G \).
THE INVERSION OF 2-STEP GRAPHS

\(H \), a contradiction. If they are not distinct, choose the smallest \(k \) such that \(w_k \) is either an \(x_i \) or \(y_j \). Suppose \(w_k = x_i \) and consider the simple paths

\((v_1, w_1, \ldots, w_k = x_i, y_j, \ldots, x_p, y_p, v_j)\) and \((v_i, w_1, \ldots, w_k = x_i, y_{i-1}, x_{i-1}, \ldots, y_1, x_1, v_j)\). One of these paths must be odd, so by Lemma 2.1, either \(v_i \leftrightarrow v_j \) or \(v_i \leftrightarrow v_j \) in \(H \), a contradiction. A similar argument leads to a contradiction if \(w_k = y_j \).

In Theorem 2.1 we saw that if \(G \) is bipartite then \(S_2(G) \) has two components. Next we see that if \(H \) has two components and \(G \in C_H \), then \(G \) is bipartite.

THEOREM 2.4. If \(H \) has exactly two components, every solution in \(C_H \) is a bipartite graph with the two sets of points in the bipartition of \(G \) determined by the components of \(H \).

Proof. Suppose \(H = (V_1, L_1) \cup (V_2, L_2) \) and \(G \in C_H \). We will prove that \(L_2 \) cannot contain a line with both end points in \(V_1 \) (or with both end points in \(V_2 \)). Assume, to the contrary, that \((v_1, v_2) \in L_2 \) where \(v_1, v_2 \in V_1 \). Let \((v_2, v_3, \ldots, v_k) \) be a shortest path from \(v_2 \) to any point \(v_k \) in \(V_2 \). Thus, \(v_1, v_2, \ldots, v_{k-1} \in V_1 \) and \(v_k \in V_2 \). This is possible since \(G \) is connected. This implies that \((v_{k-2}, v_k) \in L_H \), which is a contradiction.

Thus, if \(H \) has exactly two components, we can confine \(C_H \) to the bipartite graphs. However, if \(H \) has 2 components, it is not necessarily true that \(C_H \neq \emptyset \). Let \(H \) have two components \(H_1 \) and \(H_2 \) and suppose \(G \in C_H \). Then \(G \) is bipartite by Theorem 2.4 and from the remark following Theorem 2.1, we can construct a \(\{0, 1\} \) matrix \(A \) with rows corresponding to the points in \(H_1 \) and columns corresponding to the points in \(H_2 \). By Theorem 2.1 we have that \(H_1 \cong RG(A) \) and \(H_2 \cong CG(A) \). In particular, from Theorem 2.1 and 2.4 we have that \(C_H \neq \emptyset \) iff there exists a matrix \(A \) such that \(H_1 = RG(A) \) and \(H_2 = CG(A) \). In [3] we determined conditions on \(H_1 \) and \(H_2 \) for this to happen using clique cover graphs.

Given a graph \(G \), a finite set \(S = \{s_1, \ldots, s_n\} \) of cliques of \(G \) is called a clique cover if every point and line of \(G \) belongs to at least one clique in \(S \). We associate with \(S \) a clique cover graph, \(Q(S) \), in the following way. \(Q(S) \) is a graph on the points \(1, 2, \ldots, n \) and the line \([i, j]\) belongs to \(Q(S) \) iff \(S_i \) and \(S_j \) contain at least one common point.

The following theorem now follows immediately from the above discussion and Theorem 2 of [3].

THEOREM 2.5. Let \(H \) have two components \(H_1 \) and \(H_2 \). Then \(C_H \neq \emptyset \) iff \(H_1 \) is isomorphic to a clique cover graph of \(H_2 \).

It is important to note that we only need to show that one of the graphs is isomorphic to a clique cover graph of the other. Once one has the

\[J r. \text{ Comb., Inf. \\& Syst. Sci.} \]

Vol. 8,
isomorphism, the results of [3] provide a method for constructing \(G \in C_H \).
However, the isomorphism can be difficult to find.

3. The Case Where \(H \) is Connected

In this section we determine \(C_H \) when \(H \) is connected. Since if \(H \) is trivial (has only one point), then \(G = H \) is the unique solution, we may assume that \(H \) is not trivial (has at least two points). As in section 2, let \(A(G) \) denote the adjacency matrix of \(G \). We will need the following two lemmas.

Lemma 3.1. Suppose \(A \) is an \(m \times m \) symmetric \((0, 1) \) matrix with \(a_{ii} = 0 \) for all \(i \). If \(BG(A) \) is connected, then the graph \(G \) such that \(A(G) = A \) is connected.

Proof. Since \(BG(A) \) is connected and all \(a_i = 0, m > 1 \). Let \(i, j \in G \). We will show that there exists a path from \(i \) to \(j \). Since \(BG(A) \) is connected, there exists a path connecting \(r_i \) to \(r_j \) in \(BG \). If we let \(i = i_k \) and \(j = j_k \), then the path in \(BG \) is of the form \((r_{i_1}, e_{j_1}, r_{i_2}, e_{j_2}, \ldots, r_{i_k}, e_{j_k})\). We get a path in \(G \) as follows:

\[
[r_{i_1}, e_{j_1}] \in BG \Rightarrow a_{i_1, j_1} = 1 \text{ and } i_1 \neq j_1 [i_1, j_1] \in G
\]
\[
[c_{j_1}, r_{i_2}] \in BG \Rightarrow a_{i_2, j_2} = 1 \text{ and } i_2 \neq j_1 [i_2, j_1] \in G
\]
\[
\vdots
\]
\[
[r_{i_k}, e_{j_k}] \in BG \Rightarrow a_{i_k, j_k} = 1 \text{ and } i_k \neq j_k [i_k, j_k] \in G
\]

Hence, \((i = i_1, j_1, i_2, j_2, \ldots, i_k, j_k = j)\) is a path in \(G \) connecting \(i \) to \(j \). □

Lemma 3.2. If a graph \(H \) is isomorphic to a clique covering graph of itself, then there exists a \((0, 1)\)-matrix \(A \) such that \(H \cong RG(A) \cong CG(A) \).

Proof. Suppose \(H \) is isomorphic to a clique covering graph of itself. Let \(G_1 = H = G_2 \), then by Theorem 2 of [3] there exists a \((0, 1)\)-matrix \(A \) such that \(RG(A) = G_1 \) and \(CG(A) = G_2 \). Hence \(H \cong RG(A) \cong CG(A) \). □

If \(S \) is a clique cover of \(H \) and \(H \) is isomorphic to the clique graph of \(S \), then the matrix \(A \) in the lemma can be constructed using \(S \). Denote this matrix by \(\mathcal{A}(S) \). If a matrix \(A \) is symmetric with zeros on the diagonal, we will call \(A \) a zero-symmetric matrix. Now we determine when \(\mathcal{C}_H \neq \emptyset \).

Theorem 3.1. Let \(H \) be a connected graph with more than one point. Then \(\mathcal{C}_H \neq \emptyset \) iff \(H \) is isomorphic to a clique covering graph of itself and there exist permutation matrices \(P \) and \(Q \) such that \(PA(S)Q \) is zero-symmetric.

Proof. Suppose \(\mathcal{C}_H \neq \emptyset \) and let \(G \in \mathcal{C}_H \). Then by Theorem 2.2 we have \(H \cong RG(A) \cong CG(A) \) for \(A = \mathcal{A}(G) \). Furthermore, \(A \) has a nonzero in each row and column since \(G \) is connected with more than one point. But then if \(G_1 = H \) and \(G_2 = H \), then \(RG(A) = G_1 \) and \(CG(A) = G_2 \). Hence, by Theorem 2 of [3], \(G_1 \) is isomorphic to a clique covering graph of \(G_2 \), so

Vol. 8, No. 1 (1983)
that H is isomorphic to a clique covering graph of itself. Furthermore, $A = \mathcal{A}(S)$ is zero-symmetric since it is the adjacency matrix for G.

Suppose H is isomorphic to a clique covering graph of itself and there exist permutation matrices P and Q such that $A = P \mathcal{A}(S) Q$ is zero-symmetric. By construction (see Theorem 2 of [3]), each row and column of $\mathcal{A}(S)$ has a nonzero. Let G be the graph satisfying $A(G) = A$. Since $RG(A) = H$ is connected, $BG(A)$ is connected by Theorem 2.2 of [2], so G is connected by Lemma 3.1. By Theorem 2.2, $S_G(G) \cong RG(A)$, but $RG(A) \cong H$ by Lemma 3.3. Hence, $G \in \mathcal{C}_H$ so that $\mathcal{C}_H \neq \emptyset$.

Remark. Note that if $S = \{S_i\}$ is the clique cover of the theorem and if $|S_i|$ is the number of points in S_i, then $\sum |S_i|$ must be even since $P \mathcal{A}(S) Q$ is zero-symmetric.

To illustrate the conditions in Theorem 3.1 we consider the simple graph

$$
\begin{array}{c}
1 & 2 & 3 \\
\hline
H: & & \\
\end{array}
$$

If one attempts to construct a 2-step graph inverse for H, a logical inconsistency is reached:

1. line $(1, 2)$ in H implies G contains lines $(1, 3)$ and $(2, 3)$;
2. line $(2, 3)$ in H implies G contains lines $(1, 2)$ and $(1, 3)$; but
3. line $(1, 3)$ not in H implies G cannot contain both lines $(1, 2)$ and $(2, 3)$.

What condition in Theorem 3.1 was violated? The clique covers for H contain the line set $\{(1, 2), (2, 3)\}$ which is a minimal clique cover [3]. But consider the matrix (S) extended to have 3 cliques:

$$
\mathcal{A}(S) = \begin{bmatrix}
1 & 0 & x \\
1 & 1 & y \\
0 & 1 & z
\end{bmatrix}
$$

The clique corresponding to the last column of $\mathcal{A}(S)$ must satisfy $xz = 0$ since, if $x = z = 1$, line $(1, 3)$ is created. But it is not hard to see that $\mathcal{A}(Q)$ cannot be rearranged to a 3 zero-symmetric form.

This example can be easily extended to the form of path $H = P_n$,

$$
\begin{array}{c}
1 & 2 & \cdots & n \\
\hline
H: & & \\
\end{array}
$$

for which there is also no 2-step inverse. In the next section we present larger classes of pathologies.
By contrast suppose H is an odd cycle C_n with $2K + 1$.

The clique cover is $S = \{(1, 2), (2, 3), \ldots, (n - 1, n), (n, 1)\}$ with $H \cong Q(S)$ and the associated matrix can be rearranged to be zero-symmetric:

\[
\begin{bmatrix}
1 & 1 & & & \\
& 1 & 1 & & \\
& & 1 & \ddots & \\
& & & \ddots & 1 \\
& & & & 1
\end{bmatrix}
\]

(Note that $(n, 1)$ corresponds to column $p + 1$.)

4. **Classes of Invertible/Noninvertible Graphs**

We now make use of our previous results to determine if $C_H \neq \emptyset$ for various types of connected graphs.

Theorem 4.1. If H is connected with more than one point and $C_H = \emptyset$, then H must contain an odd cycle.

Proof. Suppose $G \subseteq C_H$. If G contains no odd cycles, it is bipartite, in which case H has 2 components, a contradiction. If G contains the odd cycle $(x_0, y_1, x_1, y_2, x_2, \ldots, y_p, x_p, x_0)$, then H contains the odd cycle $(x_0, x_1, x_2, \ldots, x_p, y_1, y_2, \ldots, y_p, x_0)$.

Theorem 4.2. $C_H \neq \emptyset$ for the following connected graphs H:
1. H is complete with more than 2 points.
2. H is an odd cycle.

Proof. (1) is obvious since $H \subseteq C_H$. For (2), let H be the odd cycle $(x_0, x_1, x_2, \ldots, x_p, y_1, \ldots, y_p, x_0)$. Then $G \subseteq C_H$ is the odd cycle $(x_0, y_1, x_1, y_2, x_2, \ldots, y_p, x_p, x_0)$.

It is also easy to construct $G \subseteq C_H$ for either (1) or (2) using Theorem 3.1.

Theorem 4.3. $C_H = \emptyset$ for the following connected graphs H:

Vol. 8, No. 1 (1983)
(1) H is an even cycle.

(2) H is bipartite.

(3) $|L_H| = p > 2k + 1$, where $H = (p, L_H)$ contains exactly one odd cycle with $2p + 1$ points.

Proof. (1) and (2) are immediate consequences of Theorem 4.1 since H does not contain an odd cycle. The proof of (3) is more involved and uses Theorem 3.1.

First suppose $2k + 1 > 3$ and let $S = S_i$ be a clique cover. Then each S_i must be a line. Furthermore, if $(x_{i_{1}}, \ldots, x_{i_{k}}, x_{i_{k+1}})$ is the cycle in H, then the cliques $S_i = \{x_{i_{1}}, x_{i_{j}}, x_{i_{k+1}}\}$, $S_j = \{x_{i_{j}}, x_{i_{k}}, x_{i_{k+1}}\}$ determine a cycle of length $k = 2k + 1$ in the clique covering graph. Since $2k + 1 < p$ and H is connected, there is a point x adjacent to some $x_{i_{j}}$. But then $x_{i_{j}}$ belongs to the cliques $(x_{i_{j-1}}, x_{i_{j}}), (x_{i_{j}}, x_{i_{j+1}}), (x_{i_{j}}, x)$ and so the clique covering graph has a 3 cycle, a contradiction. Now, if $2k + 1 = 3$ and all the cliques are lines, the above argument produces two 3-cycles, a contradiction. Otherwise, one of the cliques is the 3-clique, each line is a clique, and since we need p cliques, there are two cliques which are equal to cliques already used. Now if the 3-clique is in the cover once or three times, then $\sum |S|$ is odd which contradicts the remark following Theorem 3.1. Hence, the 3-clique must occur twice in the clique cover, say S_i and S_j, and some line must occur twice, say S_m and S_n. As above, there is a point x adjacent to a point y in the 3-clique, and the cliques S_i, S_j, and (x, y) determine a 3-cycle in the clique covering graph. If $S_m = S_n = \{x, z, y\}$, one of these points must be in another clique, say $\{z, y\}$ and then these cliques determine another 3-cycle in the clique covering graph, a contradiction.

If H is an even cycle it is easy to see that H is isomorphic to a clique covering graph of itself. Hence, from (1) in Theorem 4.3 we see the necessity of the zero-symmetric condition of Theorem 3.1. From (2) we see that if H is a tree with more than one point, $C_H = \emptyset$.

Consider the following illustration of (3) of Theorem 4.3:

![Diagram](https://via.placeholder.com/150)

$p = 2$. Suppose one attempts to construct a 2-step inverse of H using theorem 3.1. The only clique cover is $S = S_i = \{(1, 2), (2, 3), (3, 4), (4, 5), (5, 1), (1, 6), (6, 7)\}$ and we have
However, $\mathcal{A}(Q(S))$ cannot be rearranged to be zero-symmetric. This follows immediately from the fact that row 1 has three nonzeros, but every column has exactly two nonzeros.

We can generalize from this example to state the following result.

Theorem 4.3. Suppose every clique cover of H contains the line set. Then $\mathcal{C}_H = \emptyset$ if a point of H has degree ≥ 3.

Proof. By hypothesis, $\mathcal{A}(S)$ has a row with at least 3 nonzeros, whereas every column has 2 nonzeros. Thus symmetry is impossible.

We will conclude by showing an example of how Theorem 3.1 can be used to obtain a large class of nontrivial 2-step graphs. Observe that if A is a zero symmetric matrix whose elements are zeros and one and H is its row graph, then H is isomorphic to a clique covering graph of itself and so, by Theorem 3.1, $\mathcal{C}_H \neq \emptyset$ if H is connected. Thus by investigating classes of such matrices we can obtain classes of 2-step graphs. Here is one such class of matrices.

Recall that a partition of an integer is a division of the integer into positive integral parts. For $n \geq 3$ we consider partitions of n such that at least one of the integral parts is greater than or equal to 3. Thus the possibilities for 6 are $6, 5 + 1, 4 + 1 + 1, 4 + 2, 3 + 2 + 1, 3 + 1 + 1 + 1$, $3 + 3$. We will construct a zero symmetric matrix of order n for each such partition on n.

Observe first that the $k \times k$ matrix B_k with zeros on the principal diagonal and ones everywhere else has a row graph which is a k-clique; suppose $P_n = k_1 + k_2 + \ldots + k_q$ is a partition of n with $k_j \geq 3$ for at least one j. We first construct the matrix $A_0(P_n)$ which is the direct sum of the blocks $B_{k_1}, B_{k_2}, \ldots, B_{k_q}$. The row graph of $A_0(P_n)$ consists of q disjoint cliques of sizes k_1, \ldots, k_q, respectively. In displayed form we have

$$A_0(P_n) = \begin{bmatrix} B_{k_1} & 0 & \ldots & 0 \\ 0 & B_{k_2} & \ldots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \ldots & B_{k_q} \end{bmatrix}$$
Now we define \(A(P_n) \) as follows. Replace the \(k_i \times k_{i+1} \) blocks of zeros of \(A_0(P_n) \) on the first super-diagonal by blocks with all zeros except for a 1 in the lower left-hand corner, \(1 \leq i \leq q - 1 \). Similarly replace the \(k_{i-1} \times k_i \) blocks of zeros on the first sub-diagonal by blocks with all zeros except for a 1 in the upper right-hand corner, \(1 \leq i \leq q - 1 \). The resulting matrix will be zero symmetric and has a connected row graph by virtue of the fact that \(k_i \geq 3 \) for all \(i \). Hence we have a 2-step graph corresponding to a 3-part partition \(\pi \) satisfying this condition.

Now, in forming the partitions of the integer \(n \), the order of the integral parts is not important. Let us show, however, that different orderings of the integral parts of a partition can lead to non-isomorphic 2-step graphs. For \(n = 6 \) consider the partition \(3 + 1 + 1 + 1 \) and its reordering into \(1 + 1 + 3 + 1 \). Our construction gives

\[
A_{01} = \begin{bmatrix}
0 & 1 & 1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0
\end{bmatrix}
\quad \text{and} \quad
A_{02} = \begin{bmatrix}
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0
\end{bmatrix}
\]

Filling in the 1's in the appropriate positions then yields

\[
A_1 = \begin{bmatrix}
0 & 1 & 1 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 & 0 & 0 \\
1 & 1 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 & 0
\end{bmatrix}
\quad \text{and} \quad
A_2 = \begin{bmatrix}
0 & 1 & 0 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 & 1 & 0 \\
0 & 0 & 1 & 0 & 1 & 0 \\
0 & 0 & 1 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 & 0
\end{bmatrix}
\]

The corresponding row graphs are

\[
\text{RG}(A_1): \quad 1 \quad 4 \quad 6 \\
\text{RG}(A_2): \quad 3 \quad 6 \quad 4
\]

which are clearly not isomorphic. Corresponding inverses are, respectively,

\textit{Jr. Comb., Inf. & Syst. Sci.}

Vol
REFERENCES

[Received: May, 1982]
[Revised: July, 1982]