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Abstract

The ensemble Kalman Filter (EnKF) applied to a simple fire propagation model by a nonlinear
convection-diffusion-reaction partial differential equation breaks down because the EnKF creates
nonphysical ensemble members with large gradients. A modification of the EnKF is proposed
by adding a regularization term that penalizes large gradients. The method is implemented by
applying the EnKF formulas twice, with the regularization term as another observation. The
regularization step is also interpreted as a shrinkage of the prior distribution. Numerical results
are given to illustrate success of the new method.

Keywords: Data Assimilation, Ensemble Kalman Filter, State-Space Model, Penalty,
Tikhonov Regularization, Wildfire, Convection-Reaction-Diffusion, Shrinkage, Bayesian

1 Introduction

The discrete time state-space model in its most general form is an application of the Bayesian update
problem: the modeled system is advanced in time until an analysis time, when the distribution
of the system state before the update, called the prior or the forecast distribution, and the data
likelihood are combined to give the new system state distribution, called the posterior or the analysis
distribution. The system is then advanced until the next analysis time. Kalman [20] and Kalman
and Bucy [21] provided simple recursive formulas for the system mean and covariance under the
assumptions that the probability distributions are normal and the system is linear. The Kalman
filter is popular in areas as diverse as medicine [19], economics [29] and geosciences [11]. Variants
were devised for, e.g., nonlinear problems [16], missing observations [29], censored observations [18],
irregular observation times [19], nonlinear updates [14], and non-Gaussian distributions [7, 23, 27].

Traditional Kalman filters implicitly manipulate the covariance matrix of the state, and they
are thus unsuitable for systems with a large number of degrees of freedom, such as in computational
models in geophysics. Ensemble Kalman Filters (EnKFs) were developed [10, 15] that represent
the distribution of the system state using a random sample, called an ensemble, and do not use the
covariance matrix explicitly. The benefit of the EnKF comes in situations where the eigenvalues of
the covariance matrix rapidly decay. In that case, even a few ensemble members can reproduce the
large-scale behavior of the covariance behavior of the system. This situation is typical of models
of governed by partial differential equations, such as in geophysical systems. For related filters
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relaxing or removing the Gaussian assumption, see [3, 4, 9, 31]. For comprehensive surveys, see
[11, 12, 30].

This work is part of an effort to build a Dynamic Data Driven Application System (DDDAS) for
wildfires. The method proposed in this paper was motivated by the observation that straightforward
application of EnKF to a simple wildfire model [25] always fails within a few analysis cycles. Due to
statistical variability of the ensemble members, locations with large temperature gradients develop,
resulting in bigger fires and some ensemble members move away from the truth. The EnKF update
formulas, trying hopelessly to match the observations within the span of the ensemble, result in
states that are nonphysical (too large, too small, or too rough) in some places, which causes a
complete breakdown of the simulations in subsequent advancements.

We use a Bayesian approach similar to Tikhonov regularization [13] to force the analysis solution
to be more spatially smooth. Tikhonov regularization techniques were used in Kalman filters in a
different way than described here, to stabilize ill-conditioned parameter identification [17, 22]. The
beauty and utility of the method comes from the implementation; regularization requires simply
using the EnKF update formulas twice, thus avoiding the need for a new code.

The paper is organized as follows. In Sec. 2, we set the stage by briefly reviewing the Kalman
filter. The Ensemble Kalman filter and its implementation using contemporary numerical software
are considered in Sec. 3. In Sec. 4, we add regularization as an independent observation, leading
to a two stage EnKF. Finally, results for a simple fire model problem are presented in Sec. 5.

2 The Kalman Filter

We consider the state space model, in which the modeled quantity is the probability distribution
of the state vector x. The probability distribution is evolved in time by running the model until
the end of an analysis cycle, when it is updated to account for new data. At the end of the cycle,
the probability density p(x) of the system state x before the update (the prior) and the probability
density p(y|x) of the the data y given an assumed value of the system state x (the data likelihood)
are combined to give the new probability density of the system state p (x|y) (the posterior) by the
Bayes theorem,

p (x|y) ∝ p (y|x) p(x), (1)

where ∝ means proportionality. Eq. (1) determines the posterior density p(x|y) completely because
∫

p (x|y) dω (x) = 1. Consider the case of linear observation operator H: given system state x, the
data value, y, would be Hx if the model and the data were perfect with no errors. Of course, in
general, the given data y 6=Hx, so discrepancies are modeled with the likelihood p (y|x). Assume
that the prior has normal distribution with mean µ and covariance Q, and the data likelihood is
normal with mean Hx and covariance R,

p(x) ∝ exp

(

−
1

2
(x − µ)TQ−1(x − µ)

)

,

p (y|x) ∝ exp

(

−
1

2
(y − Hx)TR−1(y − Hx)

)

.

Denote the posterior system state by x̂ instead of x|y. It can be shown by algebraic manipulations
[1] that the posterior is also normal,

p (x̂) ∝ exp

(

−
1

2
(x̂ − µ̂)TP−1(x̂ − µ̂)

)

,
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where the posterior mean µ̂ and covariance P are given by the update formulas

µ̂ = µ + K (y − Hµ) , P = (I − KH) Q, (2)

K = QHT
(
HQHT + R

)−1
. (3)

The matrix K is called the Kalman gain matrix. The observation [26, 28] in the following Lemma
interprets the Kalman filter as least squares: the posterior mean µ̂ is obtained by trying to match
the observation, Hµ̂ ≈ y, as well as to preserve the mean, µ̂ ≈ µ.

Lemma 1 If µ̂ is defined by (2) and (3), then µ̂ is the solution x of the least-squares problem

S (x) = (x − µ)TQ−1(x − µ) + (y − Hx)TR−1(y − Hx) → min
x

. (4)

Proof. At the minimum,

∇S(x) = 2Q−1(x − µ) − 2HTR−1(y − Hx) = 0,

which gives x = P̃ (Q−1µ + HTR−1y), where

P̃ = (Q−1 + HTR−1H)−1 =
[
Q − QHT(HQHT + R)−1HQ

]
= (I − KH)Q = P.

Consequently, x =P (Q−1µ + HTR−1y) = µ + K(y − Hµ). �

The next Lemma is an elementary consequence of the Bayes theorem (1).

Lemma 2 Let y and z be observations such that, conditional on x, the error distributions
are independent. Then assimilating the observations y, z jointly gives the same result as first
assimilating the observation y to obtain the posterior ∝ p (y|x) p(x), then taking this posterior to
be the new prior and assimilating z.

Proof. From the Bayes theorem,

p (x|y, z) ∝ p (y, z|x) p(x) = p (z|x) p (y|x) p(x) = p (z|x) [p (y|x) p(x)] , (5)

since y and z are conditionally independent random variables. �

3 Ensemble Kalman Filter

The EnKF is a Monte Carlo implementation of the Kalman filter, which avoids evolving the
covariance matrix of the distribution of the state vector x. Instead, the distribution is represented
by a sample, called an ensemble. Ensemble members are evolved in time until the end of the
analysis cycle, when the ensemble is updated from the Bayes theorem.

Let X be a p by n matrix whose columns are ensemble members before the Bayesian update,
that is, a random sample from the prior distribution for the state vector x. The prior distribution
is assumed to be normal with covariance Q. Further, replicate the observations y into matrix Y

with d rows and n columns so that each column yk consists of the observed vector y plus a random
vector from N(0, R). Then it follows from (2) and (3) that the columns of

X̂ = X + K(Y − HX)

form a random sample from the posterior distribution.
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The ensemble filter involves two approximations. First, in the Kalman gain matrix K =
QHT

(
HQHT + R

)−1
, the state covariance Q is unknown, so it is replaced by the sample covariance

computed from the ensemble members,

Q̂ =
EET

n − 1
, E = X − X

ene
T
d

n
,

where ek is column vector of all ones of size k. This gives the matrix form of the analysis ensemble

X̂≈ X̂ens = X + Q̂HT
(

HQ̂HT + R
)−1

(Y − HX). (6)

See [6] for more details.
The second approximation results from the fact that if the state evolution is nonlinear, then the

prior distribution is not necessarily normal. Nevertheless, in practice, it is usually hoped that the
distribution from which analysis ensemble members in X̂ens are drawn from is a good approximation
of the posterior and the ensemble filter formulas are used anyway. In general, the approximations
are practical in the setting where a model is approximately linear in each model advancement step.

Remark 3 For EnKF, observations with independent error distributions can be again assimilated
sequentially according to Lemma 2, because the analysis ensemble is a sample from a distribution
that approximates the posterior in the limit for a large ensemble. However, the approximation is
different when the observations are assimilated sequentially and when they are assimilated jointly
because of the sample covariance approximation. In particular, the resulting analysis ensembles are
in general different. For the example presented, we found that differences were quantitative rather
than qualitative.

We now consider an efficient implementation of the EnKF. We write (6) as

X̂ens = X +
E(HE)T

n − 1

(
(HE)(HE)T

n − 1
+ R

)

︸ ︷︷ ︸

B

−1

(Y − HX),

where the matrix

HE = HX − HX
ene

T
d

n

can be computed using the already known product HX, and note that efficient Choleski
decomposition of the symmetric matrix B is possible because R is positive definite. The dominant
operations are full matrix-matrix operations efficiently implemented in the Level 3 BLAS [8] and
LAPACK [2] routines, and also readily parallelizable by SCALAPACK [5]. In many cases, the
computational cost can be further reduced as H is usually sparse and/or highly structured, since a
component of y represents a characteristic of the state vector at a single point or the integrated value
over some small region. In addition, if the observation errors are independent, the computation
may be split into assimilating a part of the observations at a time as noted above.

4 Two-Stage Kalman Filter

In order to stabilize the EnKF, we now combine EnKF with a technique related to Tikhonov
regularization. Tikhonov regularization for the algebraic least squares problem ‖Ax − b‖2 → min
consists of solving instead

‖Ax − b‖ + λ2 ‖Lx‖2 → min
x

. (7)

4



The added term λ2 ‖Lx‖2 incorporates a priori assumptions about the size and smoothness of the
desired solution x, in the form of the quadratic ‖Lx‖2 [13, p. 100]. The parameter λ should be
chosen so that both ‖Ax − b‖2 and ‖Lx‖2 are close to their minimal values as functions of λ; see
[13, p. 84] for details. In practice, λ is often determined by trial and error and can be considered
a smoothing parameter.

From (6) and Lemma 1, it follows that each column x̂k of the posterior ensemble X̂ens is the
solution of the least squares problem

(x̂k − xk)
TQ̂−1(x̂k − xk) + (yk − Hx̂k)

TR−1(yk − Hx̂k) → min
x̂k

. (8)

Note that in deriving (8), Lemma 1 is applied purely algebraically, with xk, x̂k, and yk playing the
roles of µ, µ̂, and y, respectively.

We want to add to EnKF the assumption that Lx does not vary much from Lµ, which,
analogously to (7), leads to a modification of (8), where the columns of the posterior ensemble
are found as the solutions x̂k of

(x̂k − xk)
TQ−1(x̂k − xk) + (yk − Hx̂k)

TR−1(yk − Hx̂k)

+ (rk − Lx̂k)
T D−1 (rk − Lx̂k) → min

x̂k

. (9)

Here, D is a given symmetric positive definite covariance matrix, D−1 plays the generalized role
of the parameter λ, and rk is sampled from N (Lµ, D). According to Lemma 1, (9) is equivalent
to assimilating two independent observations, y = Hx with the error covariance R, and Lx = Lµ
with error covariance D. From Lemma 2 and Remark 3, the Bayesian update corresponding to (9)
can be implemented as a two stage EnKF simply by applying the EnKF formulas (6) twice for the
two observations Hx = y and Lx = Lµ.

Remark 4 Assimilating the observation Lx = Lµ first, it is easy to see that the proposed two-
stage Kalman filter is equivalent to a hierarchical Bayesian update using the observation Lx = Lµ
to modify the prior. This first update step has the effect of “shrinkage,” reducing the spread of Lx

around Lµ. The observation y = Hx is then applied to the modified prior in the usual manner.

5 The Fire Model

A simple example useful for demonstrating the utility of the regularized algorithm proposed above
is the simplified model of wildfire by a reaction-convection-diffusion equation [24],

∂T

∂t
= −∇ · (k∇T ) − c1 · ∇T − c2(T − Ta) + c3

∂S

∂t
∂S

∂t
= −c4 max {0, T − Ti}

α S

on the spatial domain [0, 1], with Dirichlet boundary conditions T (0) = T (1) = Ta. The first
equation is the heat balance, where T is the temperature, −∇ · (k∇T ) is the diffusion of heat,
−c1 · ∇T is the heat transport by wind, −c2(T − Ta) is the heat escaping to the environment with
the ambient temperature Ta, and c3

∂S

∂t
is the heat generated by burning. The second equation

models the fuel supply; its right-hand side is the intensity of burning. This is a very simplified
model and we do not use any physical data, yet it appears to capture some essential qualitative fire
behavior. All coefficients c1, c2, c2, c4, α are positive. The variables and constants are dimensionless.
The model is discretized by standard finite differences on the mesh [x0 = 0, x1, . . . , xN = 1] with
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(a) Initial Conditions 
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(b) First Analysis (t=10)
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(c) Second Analysis (t=20)

Figure 1: Panel (a) shows the temperature profiles of the reference solution (solid, dark line) as
well as initial distribution of ensemble members (dotted, light lines) for the fire model. Panels (b)
and (c) are similar and show the effect of forward propagation on the reference solution (solid dark
line) as well as the ensemble members (dotted, light lines) to the first (t=10) and second (t=20)
analysis times, respectively.
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Figure 2: The reference solution of temperature for the fire model over 30 time iterations starting from
the first analysis time period (t=10).
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 (a) Forecast
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 (b) EnKF Analysis
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 (c) Penalized EnKF Analysis

Figure 3: Panel (a) shows the temperature profiles of 250 ensemble members (dotted lines) forecast
to the first analysis cycle (10 time iterations from initial conditions) and the corresponding reference
solution (solid line). Panel (b) shows the temperature profiles (dotted lines) in the analysis ensemble
corresponding to the EnKF update and includes the information in the data (△). Panel (c)
compares the regularized analysis ensemble with the reference solution where the second analysis
smooths the temperature via an approximate spatial derivative constraint.
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Figure 4: Log of the ratio of Mean-squared error (with respect to reference solution) of the analysis
ensemble (MSEA) and regularized analysis ensemble (MSER). Values greater than zero support
the use of the two-stage shrinkage method.

uniform spacing h = xk+1 − xk = 1/N and mesh size N = 100. The MATLAB code is available
from http://www-math.cudenver.edu/˜cjohns/fire1d.

In this paper, we consider the differential equation in one spatial dimension. The model has
ignition point Ti = 300 . The initial values of S is 1 on the spatial domain between 0 and 1, except
that S = 0 at a fuel break between 0.45 and 0.50. The reference solution profile of the initial
conditions for temperature is shown in the top panel of Figure 1. Panels (b) and (c) show how the
temperature profile of the reference solution propagates to time periods 0.05 and further to 0.10.

An initial ensemble of size 250 was generated by perturbing the reference solution temperature
and fuel supply values with spatially correlated normal deviates. Six of the ensemble members were
generated by shifting the reference solution right and left spatially, and then adding perturbations.
Each ensemble member is propagated forward ten time steps via the fire model to reach the time
period shown in Figure 2 to generate the forecast or prior ensemble. Panel (a) of Figure 3 shows
the 250 members of the forecast ensemble (dotted lines) and the associated true temperature
profile (solid). Synthetic data (△) collected every 10 spatial units are shown in Panel (b) along
with the ensemble (dotted lines) updated to the EnKF analysis stage. Note that the analysis
step does a good job of cinching the temperature profiles to the few observations; however, the
data information does not carry over to nearby locations (e.g. the analysis ensemble near 0.20 or
0.30 on the x-axis in panel (b).) This cinching phenomenon is a byproduct of the least-squares
approach in the filter and can produces temperature profiles not compatible with common sense,
theory, and numerical approximation schemes. Assuming a spatial correlation function amongst
the observations can eliminate some of the cinching effect in the updates and produce smoother
update ensemble members. However, we found that the strength of correlation required to make
significant improvements were impractical and counterintuitive. Furthermore, we are interested in
the particular situation where observations are accurate but spatially sparse.

To force a measure of smoothness upon the analysis, we impose a penalty on the spread of the
first spatial derivative on the temperature analysis field using a second application of the EnKF
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code as described in Sec. 4. We choose the observation function L by

Lx = L

[
T
S

]

=






(T1 − T0) /h
...

(TN − TN−1) /h






where Ti ≈ T (xi) is the discrete temperature variable at node i. So, Lx is the numerical derivative
of the temperature field in the system state. In this example, D is diagonal with non-zero elements
dii = |zi|/(2h2), where z = Lµ. That is, at each node, the variance expected in the temperature
gradient is proportional to the average temperature gradient at that node in the prior. The values
of dii are large enough not to influence reasonable smooth simulations perceptibly but they will
suppress simulations that start going unstable and exhibit large swings on the scale of the mesh
step h.

The regularized analysis field is shown in panel (c) of Figure 3. We now compare the forecasts
from the EnKF analysis (A) and the regularized analysis (R). The ensembles shown in panels (b)
and (c) of Figure 3 were propagated forward 30 time steps and the pointwise squared errors (MSE)
from the reference solution were averaged over each spatial location to simulate a prediction. The
log of the ratio of MSE’s for the two sets of predictions, MSEA/MSER, is shown in Figure 4. In
every case, the regularized predictions had a smaller MSE value than those based on the original
EnKF analysis ensemble. Because the reference solution is the basis for this MSE analysis, the
effects of bias are included in the calculations via the usual bias2 + variance formula. A graphical
comparison of the bias showed that the bias for both methods were of roughly the same magnitudes
and generally smaller for the regularized method.

6 Conclusion

Including a regularization step with the EnKF can be considered changing the prior distribution and
it was implemented by running EnKF update twice, once on the actual observation and once on the
regularization term as another artificial observation. This additional update adds information just
as the information added by the data likelihood, and it is justified by a belief about the properties
of states that should result from the numerical simulations. In nonlinear problems, the region of
valid simulation states (valid region) may be quite small and a linear ensemble Kalman filter update
will take simulation states out of the valid region, particularly if the variance of the prior or the
data likelihood are large, and a numerical breakdown results. The proposed regularization helps
to keep the states within the valid region by statistically imposing restraints on the gradient. This
two-step update is similar to a Bayesian hierarchical update and can be viewed as a shrinkage step.

We have applied the proposed improvement to EnKF for a simple fire model, which breaks
down numerically because updated states under the usual Kalman filter results in large, nonphysical
values at a later time. Since a sign of the problem is the emergence of spikes in the fire temperature,
and since detecting sharp gradients is more sensitive than detecting large values, we have chosen
as the regularization term the numerical derivative of the temperature field. The covariance of the
regularization term was chosen to penalize large swings on the spatial mesh scale.

In small systems with fast updates, the effect of choosing the covariance of the regularization
term can be considered similar to choosing a smoothing parameter in a nonparametric regression
setting.
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