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Data Assimilation for Highly Nonlinear Problems

• Coherent features: fireline in wildfire, hurricane vortex

• Error in position of feature typically have close to Gaussian distribution

• Error in physical fields at a fixed point typically do not - multimodal

– wildfire: concentrated about burning/not burning

– hurricane: which side of the vortex are we on?

• The closer to Gaussian the better ⇒

transformation of variables to get closer to Gaussian: Morphing Filters

• EnKF based on the Gaussian assumption ⇒

combine with particle filters: Predictor-Corrector Filters



1. Morphing Ensemble Filters



Data Assimilation and Additive vs Positional Correction

• alternative error models including the position of features (Hoffman et al.,

1995)

• additive correction to spatial transformation instead of original variables

– global low order polynomial mapping for alignment (Alexander et al.,

1998)

– alignment as preprocessing to an additive correction (Lawson and Hansen,

2005; Ravela et al., 2006)

• New Morphing Filter: a one-step method

– additive correction to spatial transformation and variable values

– by automatic image registration, borrowed from image processing



Intermediate States by Morphing

Registration Given two functions u0 and u1, find transformation U such that

‖u1 − u0 ◦ (I + T )‖ + C1‖T‖ + C2‖ ▽ T‖ → min .

for suitable norms and constants (Gao, 1998), with modifications to speed up and

decrease the chances of getting stuck in a local minimum.

Create intermediate functions uλ between u0 and u1, by

uλ = (u0 + λr) ◦ (I + λT ) , 0 ≤ λ ≤ 1, r = u1 ◦ (I + T )−1 − u0

Morphing Ensemble Kalman Filter The EnKF is least squares on linear

combinations of ensemble members.

Fix u0 and replace linear combinations by morphing:

apply EnKF to the morphing representation [r, T ]



Intermediate States by Morphing

λ = 0 λ = 0.25 λ = 0.5 λ = 0.75 λ = 1

Morphing of two solutions of a reaction-diffusion equation system used in a

wildfire simulation. The states with λ = 0 and λ = 1 are given. The intermediate

states are created automatically. The horizontal plane is the earth surface. The

vertical axis and the color map are the temperature. The morphing algorithm

combines the values as well as the positions.



Data assimilation by the Morphing Ensemble Kalman Filter

(a) (b) (c) (d)

The forecast ensemble (b) was created by smooth random morphing of the initial

temperature profile (a). The analysis ensemble (d) was obtained by the EnKF

applied to the transformed state. The data for the EnKF was the morphing

transformation of the simulated data (c), and the observation function was the

identity mapping. Contours are at 800K, indicating the location of the fireline.

The reaction zone is approximately between the two curves.



Morphing Transform Makes Distribution Closer to Gaussian
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Typical pointwise densities near the reaction area of the original temperature (a),

the residual component after the morphing transform, and (c) the spatial

transformation component in the X-axis. The transformation has made bimodal

distribution into unimodal.



Morphing Transform Makes Distribution Closer to Gaussian
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The p−value of the data from the ensemble after five EnKF analysis cycles from

the Anderson-Darling test to estimate the “Gaussian nature” of the point-wise

densities throughout the domain. The shading indicates that the sample is highly

Gaussian (white) or highly non-Gaussian (black) for the original temperature (a),

the transformed residual temperature (b), and the morphing function (c).



2. Predictor-Corrector
Ensemble Filters



Particle Filters

Model state (= probability density p(u) of the system state u) is represented by

a weighted ensemble (uk, wk), k = 1, . . . , N

{uk} is a sample from some probability density pπ

wk are positive weights,
N
∑

k=1
wk = 1, wk ∝

p(uk)
pπ(uk)

Given forecast ensemble (u
f
k, w

f
k) generate analysis ensemble by sampling from

some pπ and get the weights from data likelihood

ua
k ∼ pπ, wa

k ∝ p
(

d|ua
k

) pf(ua
k)

pπ(ua
k)

SIS chooses ua
k = u

f
k (does not change the ensemble) and only updates the

weights =⇒ already
(

u
f
k

)

∼ pπ, w
f
k ∝

pf(uk)
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Sequential Importance Sampling with Resampling (SIR)

Trouble with SIS:

1. data likelihoods can be very small, then

2. the analysis ensemble represents the analysis density poorly

3. one or a few of the analysis weights will dominate

Standard solution: SIR (Gordon 1993,...)

1. Resample by choosing ua
k with probability ∝ wa

k, set all weights equal

2. rely on stochastic behavior of the model to recover spread.

But there is still trouble:

1. huge ensembles (thousands) are needed because the analysis distribution is

effectively approximated only by those ensemble members that have large

weights, and a vast majority of weights is infinitesimal

2. if the model is not stochastic, need artificial perturbation to recover

ensemble spread

Solution: Predictor-corrector filters (new)

Place the analysis ensemble so that the weights are all reasonably large.



Predictor-Corrector Filters

Given forecast ensemble pf ∼ (u
f
ℓ , w

f
ℓ ) and a proposal ensemble (by a predictor,

EnKF) (ua
k) ∼ pπ

Apply Bayes theorem, get weights by estimating
pf(ua

k)
pπ(ua

k)

Trouble:

1. density estimates in high dimension are intractable

2. need to estimate far away from and outside of the span of the sample

Solution:

1. the probability densities are not arbitrary: they come from probability

measures on spaces of smooth functions, low effective dimension

2. nonparametric estimation that depends only the concept of distance



Nonparametric Density Ratio Estimation
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The norm is linked to the underlying measure via the measure of small balls.

The probability for a function in the state space to fall into a ball should be

positive and have limit zero for small balls.

The probability for a function in the state space to fall in a set of measure ν

zero should be zero.

In infinite dimension, this is far from automatic, and restricts the choice of the

norm in the density estimate! The initial ensemble is constructed by a

perturbation of initial condition by smooth random fields; this gives the

underlying measure ν and associated norm.



Numerical results for predictor-corrector ensemble filters

Choose:

predictor by EnKF (a new version of EnKF for weighted ensemble): algorighm

called EnKF+SIS

corrector with density estimation with bandwidth by k-th nearest in the proposal

ensemble, k = N1/2

Norm (distance function) from absolute value for scalar problems, Sobolev norm

for problems involving functions.

For comparison, using SIS with very large ensemble for “exact” solution.

Forecast also called prior, and analysis is posterior.



Predictor-corrector ensemble filter EnKF+SIS
with bimodal data likelihood
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Scalar bimodal prior - ensemble size 100
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Exact
Estimated posterior
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Exact
Estimated posterior

SIS was not close, EnKF did not see nongaussian density. EnKF-SIS was best.



High-dimensional example, bimodal prior

Space of functions on [0, π] of the form

u =
d

∑

n=1

cn sin (nx)

The ensemble size N = 100

The dimension of the state space d = 500

The eigenvalues of the covariance λn = n−3 to generate the initial ensemble and

λn = n−2 for density estimation.



High-dimensional example: bimodal prior
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SIS does OK, EnKF cannot see bimodal distribution, EnKF+SIS is OK.



High-dimensional example: sparse data, Gaussian case

Prior Ensemble
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SIS cannot make a large update, EnKF and EnKF+SIS are fine.



Filtering for a Stochastic ODE

Simplest ODE model problem (PDE fire model adds spatial diffusion)

ẋ = −f ′ (x) + κ white noise,

The potential

f(x) = −2x2 + x4

has 3 equilibria and the solution switches between the stable equilibria ±1.
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Filtering results for a stochastic ODE
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• One transition from +1 to -1

• data are sampled from one

“reference” solution

• ensemble size 100

• mean shown

• optimal solution advances

probability distribution “exactly” by

numerical solution of the

Fokker-Planck equation and applies

the Bayes theorem numerically to

probability densities discretized by

piecewise linear functions.

EnKF+SIS tracks the solution far better than either SIS or EnKF, which lag the

transition by more analysis cycles.



Conclusion

• Tested on toy problems

– better posterior in single analysis step

– infrequent data, larger state changes

– better convergence over multiple analysis steps

• Future

– production quality parallel implementation

– test on real problems: apply to WRF for hurricanes, WRF+wildfire

– integrate into DART

• Theory: prove convergence incl. in infinite dimension


