Packing of Graphic n-tuples

Arthur H. Busch*, Michael J. Ferrara†, Stephen G. Hartke‡, Michael S. Jacobson§, Hemanshu Kaul$^\ ¶$, and Douglas B. West$^\parallel$

January 4, 2011

Abstract

An n-tuple π (not necessarily monotone) is graphic if there is a simple graph G with vertex set $\{v_1, \ldots, v_n\}$ in which the degree of v_i is the ith entry of π. Graphic n-tuples $(d^{(1)}_1, \ldots, d^{(1)}_n)$ and $(d^{(2)}_1, \ldots, d^{(2)}_n)$ pack if there are edge-disjoint n-vertex graphs G_1 and G_2 such that $d_{G_1}(v_i) = d^{(1)}_i$ and $d_{G_2}(v_i) = d^{(2)}_i$ for all i. We prove that graphic n-tuples π_1 and π_2 pack if $\Delta \leq \sqrt{2\delta n} - (\delta - 1)$, where Δ and δ denote the largest and smallest entries in $\pi_1 + \pi_2$ (strict inequality when $\delta = 1$); also, the bound is sharp.

Kundu and Lovász independently proved that a graphic n-tuple π is realized by a graph with a k-factor if the n-tuple obtained by subtracting k from each entry of π is graphic; for even n we conjecture that in fact some realization has k edge-disjoint 1-factors. We prove the conjecture in the case where the largest entry of π is at most $n/2 + 1$ and also when $k \leq 3$.

Keywords: Degree sequence, graphic sequence, graph packing, k-factor, 1-factor

1 Introduction

An integer n-tuple π is graphic if there is a simple graph G with vertex set $\{v_1, \ldots, v_n\}$ such that $d_G(v_i) = d_i$, where $\pi = (d_1, \ldots, d_n)$ and $d_G(v)$ denotes the degree of vertex v in graph G. Such a graph G realizes π. Two n-vertex graphs G_1 and G_2 pack if they can be expressed as

*University of Dayton, Dayton, OH, Art.Busch@notes.udayton.edu
†University of Colorado Denver, Denver, CO, michael.ferrara@ucdenver.edu
‡University of Nebraska-Lincoln, Lincoln, NE, hartke@math.unl.edu. Supported by a Nebraska EPSCoR First Award and NSF grant DMS-0914815.
§University of Colorado Denver, Denver, CO, Michael.Jacobson@ucdenver.edu. Supported by NSF grant DGE-0742434.
$^\ ¶$Illinois Institute of Technology, Chicago, IL, kaul@math.iit.edu
$^\parallel$University of Illinois, Urbana, IL, west@math.uiuc.edu. Supported by NSA grant H98230-10-1-0363.
edge-disjoint subgraphs of the complete graph K_n. We study an analogue of graph packing for graphic n-tuples. Let π_1 and π_2 be graphic n-tuples, with $\pi_1 = (d_1^{(1)}, \ldots, d_n^{(1)})$ and $\pi_2 = (d_1^{(2)}, \ldots, d_n^{(2)})$ (they need not be monotone). We say that π_1 and π_2 pack if there exist edge-disjoint graphs G_1 and G_2 with vertex set $\{v_1, \ldots, v_n\}$ such $d_{G_1}(v_i) = d_i^{(1)}$ and $d_{G_2}(v_i) = d_i^{(2)}$ for all i. In graph packing, vertices may be reordered, but in packing of graphic n-tuples no reordering of the indices is allowed. Graphic n-tuples are often called graphic sequences; we use “n-tuple” partly to emphasize that the order of entries matters. When not specifying the length, we use “list”.

The condition that $\pi_1 + \pi_2$ is graphic is obviously necessary for π_1 and π_2 to pack, but the following small example shows that it is not sufficient.

Example 1.1. Let $\pi_1 = (3, 1, 2, 2, 0, 0)$ and $\pi_2 = (1, 3, 0, 0, 2, 2)$, with sum $(4, 4, 2, 2, 2, 2)$. Both π_1 and π_2 are graphic, and the complete bipartite graph $K_{2,4}$ realizes their sum. However, in every realization of π_j, the vertex v_j of degree 3 has three nonisolated neighbors. Thus v_1 and v_2 are adjacent in every realization of π_1 or π_2, and the lists do not pack. □

In fact, Dui̋r̋, Guinez, and Matamala [4] showed that determining whether two graphic n-tuples pack is NP-complete. Hence we focus on finding sharp sufficient conditions. In 1978, Sauer and Spencer [14] published the classical result that n-vertex graphs G_1 and G_2 pack if $\Delta(G_1)\Delta(G_2) < n/2$, where $\Delta(G)$ denotes the maximum vertex degree in G. In Section 2, we prove an analogue for n-tuples, showing that graphic n-tuples π_1 and π_2 pack if $\Delta \leq \sqrt{2\delta n} - (\delta - 1)$, where Δ and δ denote the largest and smallest values in $\pi_1 + \pi_2$, except that strict inequality is needed when $\delta = 1$. Furthermore, the bound is sharp; we construct lists that do not pack when the maximum entry in the sum is larger by 1. We conjecture the stronger statement that two graphic n-tuples pack if the product of corresponding terms is always less than $n/2$; this would be a more direct analogue of the Sauer–Spencer Theorem.

Kundu’s Theorem [9], published in 1973 and proved independently by Lovász [10] at about the same time, characterizes when a graphic n-tuple has a realization containing a spanning subgraph that is “almost” k-regular. In the language of packing, the result states that if π_1 is graphic and each term in π_2 is k or $k - 1$, then π_1 and π_2 pack if $\pi_1 + \pi_2$ is graphic.

In Section 3, we consider extensions of the k-factor case of Kundu’s Theorem, where a k-factor of a graph is a spanning k-regular subgraph. Kundu’s Theorem implies that a graphic n-tuple π is realizable by a graph having a k-factor if the list obtained by subtracting k from each entry is graphic. We conjecture the stronger statement that in fact when n is even there is a realization containing k edge-disjoint 1-factors (that is, a k-edge-colorable k-factor). We prove the conjecture when the largest entry is at most $n/2 + 1$. We also prove the more
difficult result that the conjecture holds when $k \leq 3$, by proving in general that there is a realization containing a k-factor that has two edge-disjoint 1-factors.

2 An Analogue of the Sauer-Spencer Theorem

The Sauer–Spencer Theorem immediately implies that n-vertex graphs G_1 and G_2 pack when their maximum degrees sum to less than $\sqrt{2n}$. Chen [2] gave a short proof of Kundu’s Theorem; we use a similar technique to prove our result for packing of graphic n-tuples. When the least entry in the sum is 1, the maximum allowed by the hypothesis is the same as in the Sauer–Spencer Theorem. Note that when we prove directly that π_1 and π_2 pack, it follows immediately that $\pi_1 + \pi_2$ is graphic.

Again let Δ and δ denote the largest and smallest entries in $\pi_1 + \pi_2$. Before proving that our condition is sufficient for π_1 and π_2 to pack, we present a simple construction that proves sharpness when $\delta = 1$. We later obtain sharpness for $\delta \geq 2$ via a slight modification of this construction.

Example 2.1. For $\delta, m \in \mathbb{N}$ with $m > 1$, let $n = 2\delta m^2$. We construct graphic n-tuples π_1 and π_2 with $\Delta = \sqrt{2\delta n}$ that do not pack. Let

$$\pi_1 = (\delta m, \delta m, (2\delta m)^{\delta(m-1)}, 0^{\delta(m-1)}, (\delta m)^{\delta-1}, 0^{\delta-1}, \delta^{\delta(m^2-m)}, 0^{\delta(m^2-m)})$$

and

$$\pi_2 = (\delta m, \delta m, 0^{\delta(m-1)}, (2\delta m)^{\delta(m-1)}, 0^{\delta-1}, (\delta m)^{\delta-1}, 0^{\delta(m^2-m)}, \delta^{\delta(m^2-m)}),$$

where the exponents denote multiplicity (lengths of constant sublists). The lists have length $2\delta m^2$, as desired. Also, the largest and smallest entries in $\pi_1 + \pi_2$ are $2\delta m$ and δ, respectively, so $\Delta = \sqrt{2\delta n}$. (The Erdős–Gallai conditions [6] readily imply that $\pi_1 + \pi_2$ is graphic, but this is not important). It remains to show that π_1 and π_2 are graphic but do not pack.

To show that π_i is graphic, start with $K_{\delta m + 1}$, split its vertices into sets V_1, \ldots, V_{m-1} of size δ plus $\delta + 1$ leftover vertices, for each i make the vertices of V_i adjacent to a set X_i of δm new vertices, and add to these $\delta m^2 + 1$ vertices a set of $\delta m^2 - 1$ isolated vertices.

Given any realization of π_1, let S be the set of $\delta m + 1$ vertices with degree exceeding δ. Their degree-sum is $2\delta^2 m^2 - \delta m(\delta - 1)$, which equals $2(\delta m + 1) + \delta^2(m^2 - m)$. To reach this total, S must induce a complete graph, and all other edges must join S to vertices of degree δ. Thus v_1 and v_2 are adjacent in every realization of π_1. The same argument applies to π_2; again v_1 and v_2 are adjacent in every realization. Since v_1 and v_2 are adjacent in all realizations of both lists, π_1 and π_2 do not pack.

3
Given a graph \(G \) and a set \(S \subseteq V(G) \), let \(G[S] \) denote the induced subgraph of \(G \) with vertex set \(S \), and let \(N_G(S) \) be the set of vertices having a neighbor in \(S \). A clique is a pairwise adjacent set of vertices.

Theorem 2.2. Let \(\pi_1 \) and \(\pi_2 \) be graphic \(n \)-tuples. If

\[
\Delta \leq \sqrt{2\delta n} - (\delta - 1),
\]

where \(\Delta \) and \(\delta \) denote the maximum and minimum values in \(\pi_1 + \pi_2 \), then \(\pi_1 \) and \(\pi_2 \) pack, except that strict inequality is required when \(\delta = 1 \).

Proof. Let \(\pi_1 \) and \(\pi_2 \) be graphic \(n \)-tuples. If \(\delta = 0 \), then \(\Delta \leq \sqrt{2\delta n} - (\delta - 1) \) implies that realizations are edgeless or consist of matchings on disjoint vertex sets, so \(\pi_1 \) and \(\pi_2 \) pack. Therefore, we may assume \(\delta \geq 1 \). We prove that if \(\pi_1 \) and \(\pi_2 \) fail to pack, then \(\Delta \geq \sqrt{2\delta n} - (\delta - 1) \), with strict inequality when \(\delta > 1 \).

Among realizations of \(\pi_1 \) and \(\pi_2 \) on vertices \(v_1, \ldots, v_n \) that have the required degrees at each vertex, choose \(G_1 \) and \(G_2 \) to minimize the number of edges that appear in both graphs. Since \(\pi_1 \) and \(\pi_2 \) do not pack, we may consider an edge \(xy \) in \(E(G_1) \cap E(G_2) \).

Let \(G = G_1 \cup G_2 \), and let \(I = V(G) - (N_G(x) \cup N_G(y)) \). With \(\delta \geq 1 \), we have \(\Delta < \sqrt{n} \), so \(I \neq \emptyset \). Let \(Q = N_G(I) \). Suppose that \(G_1 \) or \(G_2 \) has an edge \(uv \) such that \(u \in I \) and \(\{x, y\} \not\subseteq N_G(v) \); by symmetry, we may assume \(yv \notin E(G) \). Replacing \(\{xy, uv\} \) with \(\{xu, yv\} \) in that graph reduces the number of shared edges without changing vertex degrees, contradicting the choice of \(G_1 \) and \(G_2 \) (see Figure 1a).

For \(j \in \{1, 2\} \), let \(Q_j = N_{G_j}(I) \); we claim that \(Q_j \) is a clique in \(G \). Otherwise, choose \(w, w' \in Q_j \) with \(ww' \notin E(G) \). Let \(z \) and \(z' \) be (not necessarily distinct) vertices in \(I \) such that \(zw, z'w' \in E(G_j) \). Since \(ww' \notin E(G_j) \), replacing \(\{z'w', wz, xy\} \) with \(\{w'w, zx, yz'\} \) in \(E(G_j) \) reduces the number of shared edges without changing vertex degrees (see Figure 1b).

![Diagram](image-url)
Since \(Q = Q_1 \cup Q_2 \), and \(Q_1 \) and \(Q_2 \) are cliques in \(G \), the complement of \(G[Q] \) is bipartite. Letting \(r \) be the number of edges in \(G[Q] \), we obtain

\[
r \geq \left(\frac{|Q|}{2} \right) - \frac{|Q|^2}{4} = \frac{|Q|^2}{4} - \frac{|Q|}{2}.
\]

(1)

Next, note that \(|I| = n - |N_G(x) \cup N_G(y)| = n - |N_G(x)| - |N_G(y)| + |N_G(x) \cap N_G(y)| \). Since \(xy \) is a shared edge, \(|N_G(x)| \) and \(|N_G(y)| \) are at most \(\Delta - 1 \). With \(Q \subseteq N_G(x) \cap N_G(y) \),

\[
|I| \geq n - 2\Delta + 2 + |Q|.
\]

(2)

Each vertex \(v \in I \) has at least \(\delta \) incident edges in \(G_1 \) and \(G_2 \) together, and each neighbor is in \(Q \). Since \(Q \subseteq N_G(x) \cap N_G(y) \), at most \((\Delta - 2)|Q| - 2r \) edges of \(G_1 \) and \(G_2 \) together have endpoints in \(I \) and \(Q \). Therefore,

\[
|I| \leq \frac{(\Delta - 2)|Q| - 2r}{\delta}.
\]

(3)

Together, (2) and (3) yield

\[
(\Delta - 2)|Q| - 2r \geq \delta(n - 2\Delta + 2 + |Q|).
\]

(4)

Using (1) to substitute for \(r \), letting \(q = |Q| \), and simplifying brings us to

\[
q(\Delta - 1 - \delta - q/2) \geq \delta(n - 2\Delta + 2).
\]

(5)

The left side is maximized when \(q = \Delta - 1 - \delta \). Since the inequality must hold there, \((\Delta - 1 - \delta)^2 \geq 2\delta(n - 2\Delta + 2) \). Adding \(4\delta(\Delta - 1) \) to both sides yields \((\Delta - 1 + \delta)^2 \geq 2\delta n \), or

\[
\Delta \geq \sqrt{2\delta n} - (\delta - 1).
\]

(6)

To complete the sufficiency proof, we show that equality cannot hold in (6) when \(\delta \geq 2 \). Equality in (6) requires equality in the inequalities that produced it. Equality holds in (5) only when \(q = \Delta - 1 - \delta \). Equality in (4) (equivalent to (5)) requires equality in (3) and (2). Thus \(\delta|I| \) equals both sides of (4), and also \(Q = N_G(x) \cap N_G(y) \) and \(|N_G(x)| = |N_G(y)| = \Delta - 1 \). By this last equality, \(G_1 \) and \(G_2 \) share no edges incident to \(x \) or \(y \) except \(xy \).

Equality in (3) requires \(N_G(w) = Q \) whenever \(w \in I \). Since exactly \((\Delta - 2)|Q| - 2r \) edges have endpoints in \(Q \) and \(I \), and by definition \(G[Q] \) has \(r \) edges, the edges joining \(Q \) to \(I \cup \{x, y\} \) and within \(Q \) exhaust the total degree sum available to vertices of \(Q \). We conclude that in \(G \) each vertex of \(Q \) has degree \(\Delta \) and has no neighbor in \(N_G(x) \cup N_G(y) \) outside \(Q \).
Let \(X = N_G(x) - N_G(y) - \{y\} \), and let \(Y = N_G(y) - N_G(x) - \{x\} \) (see Figure 2). Since \(|N_G(x)| = |N_G(y)| = \Delta - 1\) and \(|N_G(x) \cap N_G(y)| = q = \Delta - 1 - \delta\), we have \(|X| = |Y| = \delta - 1\). If \(G_j \) has edges within both \(X \) and \(Y \), say \(uu' \in G_j[X] \) and \(vv' \in G_j[Y] \), then consider whether \(uv \in E(G_j) \). If so, then replacing \(\{xy, uv\} \) with \(\{yu, vx\} \) in \(G_j \) reduces the number of shared edges; if not, then replacing \(\{vv', xy, u'u\} \) with \(\{v'x, yu, uv\} \) does so. Hence by symmetry we may assume that edges of \(G[X] \) lie only in \(G_1 \) and edges of \(G[Y] \) lie only in \(G_2 \). Now vertices of \(X \) are isolated in \(G_2 \) and have at most \(\delta - 1 \) neighbors in \(G_1 \) (including \(x \)). If \(X \) is nonempty, then this contradicts the definition of \(\delta \). Hence equality in (6) requires \(X = \emptyset \) and \(\delta = 1 \).

Theorem 2.3. The result of Theorem 2.2 is sharp: for \(\delta, m \in \mathbb{N} \) with \(m \geq \delta \geq 2 \), there exist \(\pi_1 \) and \(\pi_2 \) with \(n = 2\delta m^2 \) such that \(\Delta = \sqrt{2\delta n} - (\delta - 2) \) but \(\pi_1 \) and \(\pi_2 \) do not pack.

Proof. We consider only \(\delta \geq 2 \) since the construction in Example 2.1 proves sharpness for \(\delta = 1 \). Choose \(m \in \mathbb{N} \) with \(m \geq \delta \), and let \(n = 2\delta m^2 \). Let \(G \) be the construction using these parameters in Example 2.1. We modify \(G \) to reduce the maximum degree by \(\delta - 1 \). This will also reduce \(\Delta \) by \(\delta - 1 \) in the sum of two specified orderings of the vertex degrees.

Recall that the construction of \(G \) begins with a complete graph \(K_{\delta m+1} \) whose vertex set is composed of sets \(V_1, \ldots, V_{m-1} \) of size \(\delta \) plus \(\delta + 1 \) additional vertices. For each \(i \) the set \(V_i \) is adjacent to a set \(X_i \) of \(\delta m \) new vertices, and there are \(\delta m^2 - 1 \) additional isolated vertices. Each vertex in \(\bigcup_i V_i \) has degree \(2\delta m \), each extra vertex in the clique has degree \(\delta m \), and \(\delta m(m-1) \) vertices outside the clique have degree \(\delta \).

Modify \(G \) by removing \(\delta - 1 \) of the extra vertices from the clique, reducing the degrees of the other vertices by \(\delta - 1 \). For \(1 \leq i \leq \delta - 1 \), put one of the removed vertices into \(X_i \). Hence the number of vertices remains \(2\delta m^2 \), the vertices of \(V_1, \ldots, V_{\delta-1} \) have degree \(2\delta m - \delta + 2 \), those of \(V_\delta, \ldots, V_{m-1} \) have degree \(2\delta m - \delta + 1 \), the two unmoved extra vertices have degree \(\delta m - \delta + 1 \), and the remaining vertices have degree \(\delta \). The new graph \(G' \) realizes the \(n \)-tuples.
\(\pi_1' \) and \(\pi_2' \) given by
\[
((\delta m - \delta + 1)^2, (2\delta m - \delta + 2)^{\delta(\delta - 1)}, 0^{\delta(\delta - 1)}, (2\delta m - \delta + 1)^{\delta(m - \delta)}, 0^{\delta(m - \delta)}, \delta^{\delta(m^2 - m) + \delta - 1}, 0^{\delta(m^2 - m) + \delta - 1})
\]
and
\[
((\delta m - \delta + 1)^2, 0^{\delta(\delta - 1)}, (2\delta m - \delta + 2)^{\delta(\delta - 1)}, 0^{\delta(m - \delta)}, (2\delta m - \delta + 1)^{\delta(m - \delta)}, 0^{\delta(m^2 - m) + \delta - 1}, \delta^{\delta(m^2 - m) + \delta - 1}).
\]

By construction, \(\pi_1' \) and \(\pi_2' \) are graphic. To show that they do not pack, we argue as in Example 2.1. In any realization of \(\pi_1' \), let \(S \) be the set of \(\delta m - \delta + 2 \) vertices with degrees exceeding \(\delta \). Their degrees sum to
\[
2\delta m \delta(m - 1) - (\delta - 1)\delta(m - 1) + \delta(\delta - 1) + 2\delta m - 2(\delta - 1),
\]
which equals \(2\left(\frac{\delta m - \delta + 2}{2}\right) + \delta^2(m^2 - m) + \delta(\delta - 1) \). To achieve this total, again \(S \) must be a clique. As in Example 2.1, \(v_1 \) and \(v_2 \) must be adjacent in all realizations of both graphs; hence \(\pi_1 \) and \(\pi_2 \) do not pack. \(\square \)

If \(a + b < \sqrt{2n} \), then also \(ab < n/2 \). Hence the conjecture below would strengthen Theorem 2.2 when \(\delta = 1 \) and provide a more direct analogue to the Sauer-Spencer Theorem.

Conjecture 2.4. Let \(\pi_1 \) and \(\pi_2 \) be graphic \(n \)-tuples, with \(\delta \) the least entry in \(\pi_1 + \pi_2 \). If \(\delta \geq 1 \) and the product of corresponding entries in \(\pi_1 \) and \(\pi_2 \) is always less than \(n/2 \), then \(\pi_1 \) and \(\pi_2 \) pack.

For fixed \(\delta \), a suitable bound on the product of corresponding entries to guarantee packing may be something like \(\delta n/2 - O(\delta \sqrt{\delta n}) \).

3 Extensions of Kundu’s Theorem

Let \(D_k(\pi) \) denote the \(n \)-tuple obtained from an \(n \)-tuple \(\pi \) by subtracting \(k \) from each entry. The “regular” case of Kundu’s Theorem states that if \(\pi \) and \(D_k(\pi) \) are graphic, then some realization of \(\pi \) has a \(k \)-factor. To extend the theorem, one could try to guarantee that some realization of \(\pi \) has edge-disjoint regular factors of degrees \(k_1, \ldots, k_t \), where \(\sum_{i=1}^t k_i = k \).

When \(n \) is odd, no regular \(n \)-vertex graph has odd degree, so existence requires all \(k_1, \ldots, k_t \) even. In that case, existence then follows immediately from Kundu’s Theorem and Petersen’s 2-Factor Theorem [12]; the latter states that every 2r-regular graph decomposes into 2-factors. It remains to consider even \(n \).
Conjecture 3.1. Let \(n \) be an even integer. If \(\pi \) is a graphic \(n \)-tuple such that \(D_k(\pi) \) is also graphic, and \(k_1, \ldots, k_t \) are positive integers with sum \(k \), then some realization of \(\pi \) has edge-disjoint regular factors with degrees \(k_1, \ldots, k_t \).

Conjecture 3.1 is immediately equivalent to the following conjecture.

Conjecture 3.2. Let \(n \) be an even integer. If \(\pi \) is a graphic \(n \)-tuple such that \(D_k(\pi) \) is also graphic, then some realization of \(\pi \) has \(k \) edge-disjoint 1-factors.

Our main result (Theorem 3.9) toward Conjecture 3.2 combines with Petersen’s Theorem to yield Conjecture 3.1 when \(k \) is even and at most two of \(k_1, \ldots, k_t \) are odd, and when \(k \) is odd and at most one of \(k_1, \ldots, k_t \) is odd.

We have proved several special cases of Conjecture 3.2. The first uses a lemma proved by A.R. Rao and S.B. Rao [13] in their study of what was called the “\(k \)-Factor Conjecture” before it became Kundu’s Theorem.

Lemma 3.3. Fix \(k \in \mathbb{N} \), and let \(\pi \) be a graphic \(n \)-tuple such that \(D_k(\pi) \) is also graphic. If \(r \) is a positive integer such that \(r \leq k \) and \(rn \) is even, then \(D_r(\pi) \) is also graphic.

Let \(\Delta(G) \) and \(\delta(G) \) denote the largest and smallest vertex degrees in a graph \(G \).

Theorem 3.4. Fix \(k, n \in \mathbb{N} \) with \(n \) even, and let \(\pi \) be a graphic \(n \)-tuple such that \(D_k(\pi) \) is also graphic. If every entry in \(\pi \) is at most \(n/2 + 1 \), then some realization of \(\pi \) has \(k \) edge-disjoint 1-factors.

Proof. The proof is by induction on \(k \). For \(k = 0 \), the statement is vacuous, and the case \(k = 1 \) is a special case of Kundu’s Theorem. Suppose then that \(k \geq 2 \) and that \(D_k(\pi) \) is graphic. By Lemma 3.3, \(D_2(\pi) \) is graphic, and since \(D_k(\pi) \) is graphic the induction hypothesis implies that there is a realization \(G \) of \(D_2(\pi) \) having \(k - 2 \) disjoint 1-factors.

The hypothesis on \(\pi \) yields \(\Delta(G) \leq n/2 - 1 \), so \(\delta(G) \geq n/2 \). Dirac’s Theorem [3] now implies that \(G \) has a spanning cycle \(C \). Since \(n \) is even, \(C \) decomposes into two edge-disjoint 1-factors. Therefore, \(G \cup C \) is a realization of \(\pi \) having \(k \) edge-disjoint 1-factors.

We also obtain Conjecture 3.2 in those cases where every entry in \(\pi \) is large, by applying Theorem 3.4 to the \(n \)-tuple obtained by subtracting every entry of \(D_k(\pi) \) from \(n - 1 \).

Corollary 3.5. Fix \(k, n \in \mathbb{N} \) with \(n \) even, and let \(\pi \) be a graphic \(n \)-tuple such that \(D_k(\pi) \) is also graphic. If every entry in \(\pi \) is at least \(n/2 + k - 2 \), then some realization of \(\pi \) has \(k \) edge-disjoint 1-factors.
Our main result in this section is that, under the conditions of Conjecture 3.2, there is a realization of π having edge-disjoint factors M_1, M_2, F that are regular of degrees 1, 1, and $k - 2$. This implies Conjecture 3.2 for $k \leq 3$; for Conjecture 3.1, it allows one or two of k_1, \ldots, k_t to be odd when k is odd or even, respectively.

We use a well-known description of the maximum matchings in a graph. Say that a matching M avoids a vertex x if M has no edge incident to x. The *Gallai–Edmonds decomposition* of a graph G is a partition of $V(G)$ into three sets defined as follows (the presentation by Lovász and Plummer [11] uses (D, A, C) instead of our (A, B, C)):

\[
A = \{x \in V(G) : \text{some maximum matching avoids } x\},
\]
\[
B = \{x \in V(G) - A : x \text{ has a neighbor in } A\},
\]
\[
C = V(G) - (A \cup B).
\]

A *near-perfect* matching in G is a matching that avoids exactly one vertex. A graph is *factor-critical* if each vertex is avoided by some near-perfect matching. The *deficiency* $\text{def}(G)$ of a graph G is defined to be $\max_{X \subseteq V(G)} (o(G - X) - |X|)$, where $o(H)$ is the number of odd components (odd number of vertices) in H. It is immediate that every matching in G avoids at least $\text{def}(G)$ vertices, and the Berge–Tutte Formula [1] states that equality holds for a maximum matching.

The Gallai–Edmonds Structure Theorem [5, 7, 8] describes the maximum matchings in a graph in terms of its Gallai–Edmonds Decomposition. We state only the parts we need.

Theorem 3.6. If (A, B, C) is the Gallai–Edmonds Decomposition of a graph G, then (a) the components of $G[A]$ are factor-critical, and (b) every maximum matching in G consists of a near-perfect matching in each component of $G[A]$, a perfect matching in $G[C]$, and a matching of B into vertices in distinct components of $G[A]$.

Consider the decomposition (A, B, C) of a graph G having an even number of vertices but no 1-factor. Say that a component of $G[A]$ is *missed* by a matching M if it has no vertex matched with a vertex of B in M. By Theorem 3.6, a maximum matching in G misses at least two components of $G[A]$. Our structural lemma, which may be of independent interest, is that when G is regular we can ensure that two such components will be nontrivial, where a graph is *nontrivial* if it has at least one edge.

Lemma 3.7. Let (A, B, C) be the Gallai–Edmonds decomposition of a regular graph F with an even number of vertices. If F does not have a 1-factor, then some maximum matching in F misses two nontrivial components of $F[A]$.

\[9\]
Proof. When F has no 1-factor, the set A is nonempty. Let S be the set of isolated vertices in $F[A]$. By Theorem 3.6, every maximum matching in F pairs B with vertices of distinct components of $F[A]$. Since the number of vertices is even, every maximum matching misses at least two components of $F[A]$.

Among the maximum matchings in F, choose M to miss the most nontrivial components of $F[A]$. If M does not miss two such components, then $|S| \geq 1$ and M misses at least one vertex a of S. Let $B'_S = B - B_S$.

Let R be the set of vertices reachable from a by M-alternating paths in F. Since M matches B into A, such paths move from A to B by edges not in M and return to A via M. If a, \ldots, b, a' are the vertices of such a path with $b \in B'_S$, then exchanging membership between M and $E(F) - M$ along the path produces a new matching M' that misses one more nontrivial component of $F[A]$ than M. The choice of M thus implies $R \subseteq S \cup B_S$.

As we explore M-augmenting paths from a, reaching a vertex in B_S also immediately adds a new vertex of S. Thus $|R \cap S| = |R \cap B_S| + 1$. This contradicts k-regularity, since $N(R \cap S) \subseteq R \cap B_S$. We conclude that a maximum matching missing the most nontrivial components must miss at least two.

Our second lemma concerns an auxiliary graph used in the proof of the theorem.

Lemma 3.8. Let l and m be positive odd integers. Let H be the graph with vertices $v_{i,j}$ for $i \in \mathbb{Z}_l$ and $j \in \mathbb{Z}_m$ such that each $v_{i,j}$ is adjacent to the four vertices of the form $v_{i \pm 1,j \pm 1}$. Let S be an independent set in H. If the first coordinates of the vertices in S are distinct, and the second coordinates of the vertices in S are distinct, then $H - S$ contains an odd cycle.

Proof. When we arrange the vertices in the natural l-by-m grid, the condition on S implies each row and column has at most one vertex of S. It suffices to find an odd closed walk avoiding S. The vertices $v_{1,1}, \ldots, v_{lm,lm}$ form an odd closed walk; it suffices unless $v_{r,r} \in S$ for some r. Since S is independent, $v_{r-1,r+1} \notin S$. Also, $v_{r-2,r}, v_{r,r+2} \notin S$. Replacing $v_{r,r}$ with $v_{r-2,r}, v_{r-1,r+1}, v_{r,r+2}$ increases the length of the walk by 2 but decreases the number of vertices of S on it by 1. Doing this independently for each vertex of S on it yields an odd closed walk avoiding S.

We can now prove the main result of this section.

Theorem 3.9. Fix $n, k \in \mathbb{N}$ with n even and $k \geq 2$. If π is a graphic n-tuple such that $D_k(\pi)$ is also graphic, then some realization of π has a k-factor with two edge-disjoint 1-factors.
Proof. Since $D_k(\pi)$ is graphic, Kundu’s Theorem provides a realization of π with a k-factor. Among all such realizations, choose a realization G and k-factor F in it to lexicographically maximize (r, s), where r is the maximum number of edge-disjoint 1-factors in F and s is the maximum size of a maximum matching in the graph \hat{F} left by deleting r 1-factors from F.

If $r \geq 2$, then the claim holds. Otherwise, $r \leq 1$ and $0 < s < n/2$. If $r = 1$, let \hat{M} be the specified matching; if $r = 0$, then $\hat{M} = \emptyset$. View \overline{G}, \hat{M}, \hat{F}, and $G - E(F)$ as a decomposition of K_n into edge-disjoint subgraphs.

Let (A, B, C) be the Gallai–Edmonds decomposition of \hat{F}. By Lemma 3.7, \hat{F} has a maximum matching M that misses two nontrivial components of $\hat{F}[A]$; call them Q and Q'. Since Q and Q' are components of $\hat{F}[A]$, each edge of K_n joining them is not in \hat{F}.

If edges xy in Q and $x'y'$ in Q' exist such that xx' and yy' lie in the same graph among $\{\overline{G}, \hat{M}, G - E(F)\}$, then switching $\{xy, x'y'\}$ into it and $\{xx', yy'\}$ into \hat{F} yields a realization G' of π with a k-factor F' (having a 1-factor if $r = 1$). Since Q and Q' are factor-critical (by Theorem 3.6), $Q - x$ and $Q' - x'$ have 1-factors. Since M misses Q and Q', replacing the edges of M in Q and Q' with xx' and 1-factors of $Q - x$ and $Q' - x'$ yields a matching M' in F' that is larger than M. By the choice of G and F, no such xx' and yy' exist.

Being factor-critical and nontrivial, Q and Q' are nonbipartite; hence each contains an odd cycle. Let $\{u_1, \ldots, u_l\}$ and $\{w_1, \ldots, w_m\}$ be the vertices along odd cycles chosen in Q and Q', respectively. Form the auxiliary graph H of Lemma 3.8, with vertices $v_{i,j}$ for $i \in \mathbb{Z}_l$ and $j \in \mathbb{Z}_m$. Let S be the subset of $V(H)$ corresponding to edges of the form u_iw_j that belong to \hat{M}. If $r = 0$, then S is empty; if $r = 1$, then S has at most one vertex in each row and column, because \hat{M} is a matching.

The vertices of $H - S$ correspond to other edges u_iw_j in K_n, each belonging to \overline{G} or to $G - E(F)$. By Lemma 3.8, $H - S$ contains an odd cycle, and hence two adjacent vertices in $H - S$ correspond to edges from the same subgraph. These edges have the form xx' and yy' previously forbidden. We conclude that $r \geq 2$, as desired.

\[\square \]

Corollary 3.10. Conjecture 3.2 is true for $k \leq 3$.

We believe that the conclusion of Lemma 3.8 remains true when two such independent sets S and S' are deleted. This would improve Theorem 3.9 to produce a realization having a k-factor with three edge-disjoint 1-factors, yielding Conjecture 3.2 for $k \leq 4$ and Conjecture 3.1 with one more odd value in k_1, \ldots, k_t than allowed by Theorem 3.9. The method cannot extend beyond that, because when $l = m = 3$ there may be three independent sets of size 1 in H that together occupy one column, and then what remains is bipartite.
References

