Iterated Brownian Bridge Kernels for Sequential Kriging Optimization

Greg Fasshauer1 and Mike McCourt2

1Colorado School of Mines, 2SigOpt

SIAM CSE 2017
Advances in Reproducing Kernel Hilbert Spaces Applied to Bayesian Optimization
Atlanta
March 2, 2017
Sequential Kriging Optimization (SKO)

Goal: Unconstrained minimization of a (costly) black-box function f.

Our Approach: Use kernel-based/kriging surrogate model for f.

SKO algorithm:

1. Create (inexpensive) kriging prediction s using N function values $y = (y_1, \ldots, y_N)^T$ at locations $X = \{x_1, \ldots, x_N\}$.

2. Analyze the surrogate s to determine the “best” location x_{N+1} for the optimization of f.

3. Update $X = X \cup \{x_{N+1}\}$, $y = (y, y_{N+1})$ and s. Return to Step 2.

We judge “best” in terms of expected improvement \cite{JSW98, SWN03},

$$
\text{EI}(x) = \mathbb{E}[y^* - \text{Y}_x]
= \int_{-\infty}^{\infty} (y^* - y) \text{d}F_{\text{Y}_x}(y),
$$

where F_{Y_x} is the distribution associated with y-values and y^* is the value upon which to improve (which should be F_{Y_x}-measurable).
Sequential Kriging Optimization (SKO)

Goal: Unconstrained minimization of a (costly) black-box function \(f \).

Our Approach: Use kernel-based/kriging surrogate model for \(f \).

SKO algorithm:

1. Create (inexpensive) kriging prediction \(s \) using \(N \) function values
 \[y = (y_1 \cdots y_N)^T \] at locations \(\mathcal{X} = \{x_1, \ldots, x_N\} \).
2. Analyze the surrogate \(s \) to determine the “best” location \(x_{N+1} \) for
 the optimization of \(f \).
3. Update \(\mathcal{X} = \mathcal{X} \cup \{x_{N+1}\}, \ y = \begin{pmatrix} y \\ y_{N+1} \end{pmatrix} \) and \(s \). Return to Step 2.

We judge “best” in terms of expected improvement [JSW98, SWN03],

\[EI(x) = E[(y^* - Yx) +] = \int_{-\infty}^{\infty} (y^* - y) + dF_{Yx}(y) \]

where \(F_{Yx}(y) \) is the distribution associated with \(y \)-values and
\(y^* \) is the
value upon which to improve (which should be \(F_{Yx} \)-measurable).

Greg Fasshauer
Sequential Kriging Optimization (SKO)

Goal: Unconstrained minimization of a (costly) black-box function f.

Our Approach: Use kernel-based/kriging surrogate model for f.

SKO algorithm:

1. Create (inexpensive) kriging prediction s using N function values $y = (y_1 \cdots y_N)^T$ at locations $X = \{x_1, \ldots, x_N\}$.
2. Analyze the surrogate s to determine the “best” location x_{N+1} for the optimization of f.
3. Update $X = X \cup \{x_{N+1}\}$, $y = \begin{pmatrix} y \\ y_{N+1} \end{pmatrix}$ and s. Return to Step 2.

We judge “best” in terms of expected improvement [JSW98, SWN03],

$$EI(x) = \mathbb{E}[(y^* - Y_x)_+] = \int_{-\infty}^{\infty} (y^* - y)_+ dF_{Y_x}(y),$$

where F_{Y_x} is the distribution associated with y-values and y^* is the value upon which to improve (which should be F_{Y_x}-measurable).
The Kriging Model

Given a Gaussian (zero-mean) random field Y with covariance kernel K and observations

$$Y = (Y_{x_1}, \ldots, Y_{x_N})^T,$$

Y_{x_j} zero-mean random variables, the (simple) kriging predictor is of the form

$$\hat{Y}_x = \sum_{j=1}^{N} w_j(x) Y_{x_j} = w(x)^T Y,$$

\hat{Y}_x: zero-mean random variable,

$w(\cdot) = (w_1(\cdot), \ldots, w_N(\cdot))^T$: vector of weight functions.

“Optimal” weights $\hat{w}_j(\cdot)$ will minimize the MSE of the predictor, i.e.,

$$\text{MSE}(\hat{Y}_x) = \mathbb{E} \left[\left(Y_x - w(x)^T Y \right)^2 \right].$$
Using the covariance kernel \(K \) of \(Y \), i.e., \(K(x, z) = \mathbb{E}[Y_x Y_z] \), we have

\[
\text{MSE}(\hat{Y}_x) = \mathbb{E} \left[\left(Y_x - w(x)^T Y \right)^2 \right]
= \mathbb{E}[Y_x Y_x] - 2\mathbb{E}[Y_x w(x)^T Y] + \mathbb{E}[w(x)^T Y Y^T w(x)]
= K(x, x) - 2w(x)^T (k(x)) + w(x)^T K w(x).
\]
Using the covariance kernel K of Y, i.e., $K(x, z) = \mathbb{E}[Y_x Y_z]$, we have

$$\text{MSE}(\hat{Y}_x) = \mathbb{E} \left[\left(Y_x - w(x)^T Y \right)^2 \right]$$

$$= \mathbb{E}[Y_x Y_x] - 2\mathbb{E}[Y_x w(x)^T Y] + \mathbb{E}[w(x)^T Y Y^T w(x)]$$

$$= K(x, x) - 2w(x)^T (k(x)) + w(x)^T K w(x).$$

Differentiation and equating to 0 yields the optimum weight vector

$$\hat{w}(x) = K^{-1} k(x),$$
Using the covariance kernel K of Y, i.e., $K(x, z) = \mathbb{E}[Y_x Y_z]$, we have

$$
\text{MSE}(\hat{Y}_x) = \mathbb{E} \left[\left(Y_x - w(x)^T Y \right)^2 \right]
$$

$$
= \mathbb{E}[Y_x Y_x] - 2\mathbb{E}[Y_x w(x)^T Y] + \mathbb{E}[w(x)^T Y Y^T w(x)]
$$

$$
= K(x, x) - 2w(x)^T k(x) + w(x)^T K w(x).
$$

Differentiation and equating to 0 yields the optimum weight vector

$$
\hat{w}(x) = K^{-1} k(x),
$$

so that the (simple) kriging predictor

$$
\hat{Y}_x = k(x)^T K^{-1} Y
$$

is the best linear unbiased predictor.
Using the covariance kernel K of Y, i.e., $K(x, z) = \mathbb{E}[Y_x Y_z]$, we have

$$\text{MSE}(\hat{Y}_x) = \mathbb{E} \left[(Y_x - w(x)^T Y)^2 \right]$$

$$= \mathbb{E}[Y_x Y_x] - 2\mathbb{E}[Y_x w(x)^T Y] + \mathbb{E}[w(x)^T Y Y^T w(x)]$$

$$= K(x, x) - 2w(x)^T (k(x)) + w(x)^T K w(x).$$

Differentiation and equating to 0 yields the optimum weight vector

$$w(x)^* = K^{-1} k(x),$$

so that the (simple) kriging predictor

$$\hat{Y}_x = k(x)^T K^{-1} Y$$

is the best linear unbiased predictor. The surrogate s corresponds to the kriging prediction (specific realization)

$$\hat{y}_x = k(x)^T K^{-1} y.$$
Expected Improvement

The kriging model provides a normal density $p(y|x, Y_x)$ for the EI computation:

$$EI(x) = \int_{-\infty}^{\infty} (y^* - y) dF_{Y_x}(y)$$

$$= \int_{-\infty}^{y^*} (y^* - \mu) dF_{Y_x}(y) - \int_{-\infty}^{y^*} (y - \mu) dF_{Y_x}(y)$$

$$= (y^* - \mu) F_{Y_x}(y^*) - \int_{-\infty}^{y^*} (y - \mu) \frac{1}{\sqrt{2\pi}\sigma^2} \exp \left(- \frac{(y - \mu)^2}{2\sigma^2} \right) dy$$

$$= (y^* - \mu) F_{Y_x}(y^*) - \frac{1}{2} \frac{1}{\sqrt{2\pi}\sigma^2} \int_{\infty}^{(y^* - \mu)^2} \exp \left(- \frac{u}{2\sigma^2} \right) du$$

$$= (y^* - \mu) F_{Y_x}(y^*) + \sigma^2 F'_{Y_x}(y^*) .$$

Mean of Y_x: $\mu = \mathbb{E}[Y_x] = \hat{y}_x = k(x)^T K^{-1} y$

Variance of Y_x: $\sigma^2 = \mathbb{E}[(Y_x - \hat{y}_x)^2] = K(x, x) - k(x)^T K^{-1} k(x)$
Taking a Deterministic Kernel-based Perspective

Given data \(\{\mathcal{X}, \mathbf{y}\} \), write the kernel interpolant (surrogate) as

\[
s(\mathbf{x}) = \sum_{j=1}^{N} c_j K(\mathbf{x}, \mathbf{x}_j) = \mathbf{k}(\mathbf{x})^T \mathbf{c}, \quad \mathbf{x} \in \Omega \subseteq \mathbb{R}^d
\]

with \(K : \Omega \times \Omega \rightarrow \mathbb{R} \) a positive definite reproducing kernel.
Taking a Deterministic Kernel-based Perspective

Given data \(\{ \mathbf{x}, \mathbf{y} \} \), write the kernel interpolant (surrogate) as

\[
s(\mathbf{x}) = \sum_{j=1}^{N} c_j K(\mathbf{x}, \mathbf{x}_j) = \mathbf{k}(\mathbf{x})^T \mathbf{c}, \quad \mathbf{x} \in \Omega \subseteq \mathbb{R}^d
\]

with \(K : \Omega \times \Omega \rightarrow \mathbb{R} \) a positive definite reproducing kernel.

To find \(c_j \) solve the interpolation equations

\[
s(\mathbf{x}_i) = y_i, \quad i = 1, \ldots, N,
\]

which leads to a linear system \(K \mathbf{c} = \mathbf{y} \) with system matrix

\[
K_{ij} = K(\mathbf{x}_i, \mathbf{x}_j), \quad i, j = 1, \ldots, N,
\]
Taking a Deterministic Kernel-based Perspective

Given data \(\{ \mathcal{X}, \mathbf{y} \} \), write the kernel interpolant (surrogate) as

\[
s(\mathbf{x}) = \sum_{j=1}^{N} c_j K(\mathbf{x}, \mathbf{x}_j) = \mathbf{k}(\mathbf{x})^T \mathbf{c}, \quad \mathbf{x} \in \Omega \subseteq \mathbb{R}^d
\]

with \(K : \Omega \times \Omega \rightarrow \mathbb{R} \) a positive definite reproducing kernel. To find \(c_j \) solve the interpolation equations

\[
s(\mathbf{x}_i) = y_i, \quad i = 1, \ldots, N,
\]

which leads to a linear system \(\mathbf{K} \mathbf{c} = \mathbf{y} \) with system matrix

\[
K_{ij} = K(\mathbf{x}_i, \mathbf{x}_j), \quad i, j = 1, \ldots, N,
\]

so that – as above – the surrogate is given by

\[
s(\mathbf{x}) = \mathbf{k}(\mathbf{x})^T \mathbf{K}^{-1} \mathbf{y}.
\]
The kernel interpolant is more accurate (as measured by the pointwise error) than any other linear combination of the data very similar to BLUP. In particular, for any $f \in \mathcal{H}_K(\Omega)$

$$|f(x) - s(x)| \leq P_{K,x}(x)\|f\|_{\mathcal{H}_K(\Omega)}$$

with power function $P_{K,x}(x) = \sqrt{K(x,x) - k(x)^TK^{-1}k(x)}$.

The kernel interpolant provides the best approximation to f from $\mathcal{H}_K(\Omega)$ in the $\| \cdot \|_{\mathcal{H}_K(\Omega)}$ norm.

The kernel interpolant is the minimum $\mathcal{H}_K(\Omega)$-norm interpolant.
Matérn Kernels

Popular in spatial statistics and approximation theory

\[\kappa(\varepsilon r) = \frac{K_{d/2-\beta}(\varepsilon r)}{(\varepsilon r)^{d/2-\beta}}, \quad \beta > \frac{d}{2} \]

\[K_\nu: \text{ modified Bessel functions of the second kind of order } \nu \]
Matérn Kernels

Popular in spatial statistics and approximation theory

$$\kappa(\varepsilon r) = \frac{K_{d/2 - \beta}(\varepsilon r)}{\varepsilon r^{d/2 - \beta}}, \quad \beta > \frac{d}{2}$$

K_ν: modified Bessel functions of the second kind of order ν

$$\kappa(\varepsilon r) = (1 + \varepsilon r)e^{-\varepsilon r}, \quad \beta = \frac{5}{2}, \ C^2$$

$$\kappa(\varepsilon r) = (1 + \varepsilon r + \frac{1}{3}(\varepsilon r)^2)e^{-\varepsilon r}, \quad \beta = \frac{7}{2}, \ C^4$$

$$\kappa(\varepsilon r) = (1 + \varepsilon r + \frac{2}{5}(\varepsilon r)^2 + \frac{1}{15}(\varepsilon r)^3)e^{-\varepsilon r}, \quad \beta = \frac{9}{2}, \ C^6$$
A Series Approach to Positive Definite Kernels

Every positive definite kernel K has a Hilbert–Schmidt (or Mercer) series expansion:

$$K(x, z) = \sum_{n=1}^{\infty} \lambda_n \varphi_n(x) \varphi_n(z), \quad x, z \in \Omega \subseteq \mathbb{R}^d,$$

where (λ_n, φ_n) are ρ-orthonormal eigenpairs of a Hilbert–Schmidt integral operator $\mathcal{K} : L_2(\Omega, \rho) \rightarrow L_2(\Omega, \rho)$, i.e.,

$$\mathcal{K} \varphi_n = \lambda_n \varphi_n$$

$$\iff \int_{\Omega} K(x, z) \varphi_n(z) \rho(z) dz = \lambda_n \varphi_n(x), \quad x \in \Omega, \ n = 1, 2, \ldots.$$
Simple Example: Brownian Bridge Kernel

Defined as

\[K(x, z) = \min(x, z) - xz = \begin{cases}
 x(1 - z), & 0 \leq x \leq z \leq 1, \\
 z(1 - x), & 0 \leq z \leq x \leq 1.
\end{cases} \]

One can verify that the eigenvalues and normalized eigenfunctions

\[\lambda_n = (n\pi)^{-2}, \quad \varphi_n(x) = \sqrt{2} \sin(n\pi x), \quad n = 1, 2, \ldots, \]

satisfy \[K \varphi_n = \lambda_n \varphi_n \text{ (with } \rho(z) \equiv 1), \text{ i.e.,} \]

\[\int_0^1 (\min(x, z) - xz) \sin(n\pi z) dz = (n\pi)^{-2} \sin(n\pi x), \quad n = 1, 2, \ldots. \]
Simple Example: Brownian Bridge Kernel

Defined as

\[
K(x, z) = \min(x, z) - xz = \begin{cases}
 x(1 - z), & 0 \leq x \leq z \leq 1, \\
 z(1 - x), & 0 \leq z \leq x \leq 1.
\end{cases}
\]

One can verify that the eigenvalues and normalized eigenfunctions

\[
\lambda_n = (n\pi)^{-2}, \quad \varphi_n(x) = \sqrt{2} \sin(n\pi x), \quad n = 1, 2, \ldots,
\]

satisfy \(K\varphi_n = \lambda_n\varphi_n\) (with \(\rho(z) \equiv 1\)), i.e.,

\[
\int_0^1 (\min(x, z) - xz) \sin(n\pi z) dz = (n\pi)^{-2} \sin(n\pi x), \quad n = 1, 2, \ldots.
\]

The Hilbert-Schmidt expansion is a generalized Fourier series

\[
K(x, z) = \min(x, z) - xz = \sum_{n=1}^{\infty} \frac{2}{n^2\pi^2} \sin(n\pi x) \sin(n\pi z).
\]
Iterated Brownian Bridge Kernels

Green’s kernels of 1-D iterated modified Helmholtz equation

\[
\left(-\frac{d^2}{dx^2} + \varepsilon^2 I \right)^\beta K(x, z) = \delta(x - z), \quad x, z \in [0, 1], \quad \beta \in \mathbb{N}, \quad \varepsilon \geq 0,
\]

with boundary conditions

\[
\frac{d^{2\nu}}{dx^{2\nu}} K(0, z) = \frac{d^{2\nu}}{dx^{2\nu}} K(1, z) = 0, \quad \nu = 0, \ldots, \beta - 1.
\]
Iterated Brownian Bridge Kernels

Green’s kernels of 1-D iterated modified Helmholtz equation

\[
\left(-\frac{d^2}{dx^2} + \varepsilon^2 I\right)^\beta K(x, z) = \delta(x - z), \quad x, z \in [0, 1], \; \beta \in \mathbb{N}, \; \varepsilon \geq 0,
\]

with boundary conditions

\[
\frac{d^{2\nu}}{dx^{2\nu}} K(0, z) = \frac{d^{2\nu}}{dx^{2\nu}} K(1, z) = 0, \quad \nu = 0, \ldots, \beta - 1.
\]

The Hilbert–Schmidt expansion for these kernels is

\[
K(x, z) = \sum_{n=1}^{\infty} \frac{2}{(n^2\pi^2 + \varepsilon^2)^\beta} \sin(n\pi x) \sin(n\pi z),
\]

i.e., the eigenvalues and eigenfunctions are

\[
\lambda_n = \frac{1}{(n^2\pi^2 + \varepsilon^2)^\beta}, \quad \varphi_n(x) = \sqrt{2} \sin(n\pi x).
\]
Properties of Kernels

<table>
<thead>
<tr>
<th></th>
<th>Matérn</th>
<th>IBB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Positive definite</td>
<td>on \mathbb{R}^d (when $\beta > \frac{d}{2}$) via Bochner–Schoenberg theory, i.e., radial Fourier transform $F_d \kappa(\omega) = \left(1 + \omega^2\right)^{-\beta} > 0$</td>
<td>on $[0, 1]$ via Hilbert–Schmidt/Mercer expansion</td>
</tr>
<tr>
<td>RKHS</td>
<td>classical Sobolev spaces $H^\beta(\mathbb{R}^d)$</td>
<td>subspaces of $H^\beta([0, 1])$ with appropriate BCs</td>
</tr>
<tr>
<td>Fundamental solution of</td>
<td>d-dimensional iterated modified Helmholtz operator, i.e., $D = (-\nabla^2 + \varepsilon^2 I)^\beta$</td>
<td>1-dimensional iterated modified Helmholtz operator, i.e., $D = (-\frac{d^2}{dx^2} + \varepsilon^2 I)^\beta$</td>
</tr>
<tr>
<td>Parameters</td>
<td>kernel scale and smoothness</td>
<td>kernel scale and smoothness</td>
</tr>
<tr>
<td>ε and β</td>
<td>specify</td>
<td></td>
</tr>
<tr>
<td>$\varepsilon \to 0$ limit of interpolant</td>
<td>polyharmonic spline interpolant</td>
<td>interpolating piecewise polynomial spline of degree $2\beta - 1$ with special BCs</td>
</tr>
</tbody>
</table>

Greg Fasshauer

IBB Kernels in SKO
Two-Parameter IBB Kernels

\[\beta = 1, \varepsilon = 0 \]

\[\beta = 1, \varepsilon = 10 \]

Smoothness increases with \(\beta \)
Localization increases with \(\varepsilon \)
Two-Parameter IBB Kernels

$\beta = 2, \varepsilon = 0$

$\beta = 2, \varepsilon = 10$

Smoothness increases with β

Localization increases with ε
Two-Parameter IBB Kernels

$\beta = 3, \varepsilon = 0$

$\beta = 3, \varepsilon = 10$

Smoothness increases with β

Localization increases with ε
Two-Parameter IBB Kernels

\[\beta = 7, \varepsilon = 0 \]

\[\beta = 7, \varepsilon = 10 \]

Smoothness increases with \(\beta \)
Localization increases with \(\varepsilon \)
Two-Parameter IBB Kernels

\[\beta = 20, \varepsilon = 0 \]

\[\beta = 20, \varepsilon = 50 \]

Smoothness increases with \(\beta \)
Localization increases with \(\varepsilon \)
Comparison: C^2 Matérn (dashed) vs. IBB (solid) Kernel

$\beta = 2, \varepsilon = 30$

$\beta = 2, \varepsilon = 50$

Smoothness increases with β
Localization increases with ε
Comparison: C^6 Matérn (dashed) vs. IBB (solid) Kernel

$\beta = 4, \varepsilon = 30$

$\beta = 4, \varepsilon = 50$

Smoothness increases with β
Localization increases with ε
Numerical Experiments

Motivation: Standard SKO tends to do lots of boundary sampling.

Remedy: Enforce boundary conditions via IBB kernels.

Reasoning behind our approach

- IBB kernels yield **lower variance at the boundary**.
- Therefore the EI criterion should cause IBB kernels to implicitly prefer searching away from the boundary.

We compare SKO with a **fixed maximum number of points** for

- C^4 full-space radial Matérn kernels to
- tensor product of C^4 ($\beta = 3$) IBB kernels.

We include a **linear mean** and fit using generalized least squares:

$$s(x) = k(x)^T K^{-1} (y - Pb) + p(x)^T b,$$
$$b = (P^T K^{-1} P)^{-1} P^T K^{-1} y$$
Comparing Kernels in 2D SKO (f satisfies BCs)

The full space Matérn does well, but spends many points sampling around the boundary.

Radial Matérn kernel ($\varepsilon = 5$)
Comparing Kernels in 2D SKO (f satisfies BCs)

The IBB kernel takes advantage of the fact that f satisfies the BCs, resulting in tighter sampling near the minimum.

Iterated Brownian bridge kernel ($\varepsilon = 5$)
Comparing Kernels in 2D SKO (linear BC violation)

f has multiple local minima, and is composed of a BC satisfying function plus a linear term. Many samples around the boundary.

Radial Matérn kernel ($\varepsilon = 8$)
Comparing Kernels in 2D SKO (linear BC violation)

Sampling more concentrated near minimum and about half the variance.

Iterated Brownian bridge kernel ($\varepsilon = 8$)
Comparing Kernels in 2D SKO (no BC structure)

The full-space kernel produces an overall more accurate approximation, but at the cost of sampling near the boundary.

Radial Matérn kernel ($\varepsilon = 6$)
Comparing Kernels in 2D SKO (no BC structure)

Even a function with no BC structure can still be effectively optimized so long as the minimum is not near the boundary.

Iterated Brownian bridge kernel ($\varepsilon = 6$)
Comparing Kernels in 3D SKO (f satisfies BCs)

Similar behavior occurs in higher dimensions ...

Radial Matérn kernel ($\epsilon = 5$)
Comparing Kernels in 3D SKO (f satisfies BCs)

though the results are harder to visualize.

Iterated Brownian Bridge kernel ($\varepsilon = 5$)
Comparing Kernels in 3D SKO (f satisfies BCs)

The impact of boundary sampling is more pronounced in higher dimensions and here the 60 sampled points are clearly distributed differently based on the kernel.
Summary

- Introduced an effective variant of SKO for functions whose minimum occurs away from the boundary.
- Accomplished by using kernels with built-in BCs (such as IBB kernels)
- Future work
 - Identifying and dealing with problems whose minimum does occur near the boundary.
- Other applications of IBB kernels
 - numerical solution of PDEs via (space-time) collocation

MATLAB code available at
http://math.iit.edu/~mccomic/gaussqr
References I

Comparing Kernels in 2D SKO (solution near/on boundary)

Problems may arise when using IIB kernels if the minimum lies on the boundary.

- This movie shows a parametrized version of the first test function, where the minimum approaches the boundary.
- The full space Matérn kernel performs consistently.
- The IBB kernel is unable to construct a surrogate that wants to sample towards the boundary.

Adaptation

Try to identify this condition and modify the polynomial mean to produce a surrogate that is willing to search a boundary when compelled to do so.