1. 38.5 Let X be subset of a metric space M. We say that a point x in M is an accumulation point of X there exists a sequence $\{x_n\}$ in X such that $\lim_{n \to \infty} x_n = x$ and $x_n \neq x$ for all n. Denote by X^a the set of all accumulation points of X.

(a) Prove that X is closed if and only if $X^a \subset X$.
(b) Prove that if X is a bounded infinite subset of \mathbb{R}, then $X^a \neq \emptyset$.
(c) Prove that if X is an uncountable subset of \mathbb{R}, then $X^a \neq \emptyset$.

Solution.

(a) We have defined that X is closed if $\lim_{n \to \infty} x_n \in X$ for every sequence $\{x_n\}$ in X which converges in M.

\iff: Let x be an accumulation point of X. Then there exists a sequence $\{x_n\}$ in X such that $\lim_{n \to \infty} x_n = x$ in M, and because X is closed, $x \in X$.

\iff: Suppose that $X^a \subset X$, $\{x_n\}$ is a sequence in X, and $\lim_{n \to \infty} x_n = x$. We need to show that $x \in X$. If $x_n = x$ for some n, then $x_n \in X$ because $x \in X$. If $x_n \neq x$ for all n, then $x \in X^a \subset X$.

(b) Because X is infinite, we can choose a sequence $\{x_n\}$ in X with all x_n different. Because X is bounded, the sequence $\{x_n\}$ is bounded, and by the Weierstrass theorem, there is a convergent subsequence $x_{n_k} \to x$. We will show that $x \in X^a$. If $x_{n_k} \neq x$ for all k, we are done. Otherwise, since all x_{n_k} are different, $x_{n_k} = x$ for only one k, and by removing this term from the subsequence we get a subsequence which of numbers from X all different from x, which also converges to x.

Another solution. Because X is bounded, $X \subset (a_0, b_0)$ for some real a_0, b_0. Then $X \cap (a_0, b_0)$ is infinite. If we already have a_k, b_k such that $X \cap (a_k, b_k)$ is infinite, at least one of the sets

$$X \cap \left(a_k, \frac{a_k + b_k}{2} \right), \quad X \cap \left(\frac{a_k + b_k}{2}, b_k \right)$$

is infinite. Choose (a_{k+1}, b_{k+1}) to be one of the intervals $(a_k, \frac{a_k + b_k}{2})$ or $(\frac{a_k + b_k}{2}, b_k)$ such that $X \cap (a_k, b_k)$ is infinite. By induction, we get intervals

$$(a_0, b_0) \supset (a_1, b_1) \supset \cdots \supset (a_k, b_k) \supset \cdots$$

of lengths

$$b_k - a_k = \frac{b_0 - a_0}{2^k} \to 0, \quad k \to \infty.$$

Since a_k is increasing and bounded (by b_0), it has a limit L. Because $\lim_{k \to \infty} b_k - a_k = 0$, b_k has the same limit L. Since the set $X \cap (a_k, b_k)$ has at least two elements (in fact, it is infinite), we can choose $x_k \in X \cap (a_k, b_k)$, $x_k \neq L$, and by the squeeze theorem, $\lim_{k \to \infty} x_k = L$.

(c) We first show that if $x \in X$ but $x \notin X^a$ then

$$\exists \varepsilon_x > 0 : (x - \varepsilon_x, x + \varepsilon_x) \cap X \neq \{x\}. \quad (1)$$
Otherwise
\[\forall \varepsilon > 0 : (x - \varepsilon, x + \varepsilon) \cap X \neq \{x\} , \]

Because \(x \in (x - \varepsilon, x + \varepsilon) \cap X \) always and choosing \(\varepsilon = 1/n \) in turn we get
\[\forall n \in \mathbb{N} \exists x_n \in (x - 1/n, x + 1/n) \cap X, x_n \neq x. \]

Since \(x_n \to x, n \to \infty \), and \(x_n \neq x \) for all \(n \), it follows that \(x \in X^a \).

Taking the \(\varepsilon_x \) from (1), we have
\[X \subset \bigcup_{x \in X} (x - \varepsilon_x/2, x + \varepsilon_x/2) \]

and the sets \((x - \varepsilon_x/2, x + \varepsilon_x/2) \) are disjoint; if
\[(x - \varepsilon_x/2, x + \varepsilon_x/2) \cap (y - \varepsilon_y/2, y + \varepsilon_y/2) \neq \emptyset \]

for some \(x, y \in X \), \(x \neq y \), then \(|x - y| < \varepsilon_x/2 + \varepsilon_y/2 \leq \max \{ \varepsilon_x, \varepsilon_y \} \) and so either \(y \in (x - \varepsilon_x, x + \varepsilon_x) \cap X \) or \(x \in (y - \varepsilon_y, y + \varepsilon_y) \cap X \), which is a contradiction. By the density of rationals, there exists a rational number \(r_x \in (x - \varepsilon_x/2, x + \varepsilon_x/2) \) and since the intervals are disjoint, \(r_x \) is different for different \(x \), and \(x \mapsto r_x \) is a one to one mapping between \(X \) and a subset of rationals, which is countable.

Alternative solution. Define \(X_n = X \cap [n, n + 1] \). If all \(X_n \) were finite, then
\[X = \bigcup_{n=-\infty}^{\infty} X_n \]

is countable as the countable union of finite sets. Thus there exists \(X_n \) which is infinite. Because \(X_n \) is bounded, \(\emptyset \neq X_n^a \) and because \(X_n^a \subset X^a \), it holds that \(X^a \neq \emptyset \).

2. 38.7 Let \(\delta^{(k)} \) be the sequences
\[\delta^{(1)} = (1, 0, 0, \ldots) \]
\[\delta^{(2)} = (0, 1, 0, \ldots) \]
\[\vdots \]

that is, for each \(k \), \(\delta^{(k)} \) is the sequence \(\{\delta^{(k)}_n\}_{n=1}^{\infty} \) defined by \(\delta^{(k)}_k = 1, \delta^{(k)}_n = 0 \) if \(n \neq k \). Prove that the set \(X = \{\delta^{(k)}|k \in \mathbb{N}\} \) is closed subset of \(\ell^1, \ell^2, c^0 \), and \(\ell^\infty \).

Solution. First, \(X \) is a subset of all those spaces:
\[\sum_{n=1}^{\infty} |\delta^{(k)}_n| = 1 \implies \delta^{(k)} \in \ell^1 \]
\[\sum_{n=1}^{\infty} |\delta^{(k)}_n|^2 = 1 \implies \delta^{(k)} \in \ell^2 \]
\[\forall n \in \mathbb{N} : |\delta^{(k)}_n| \leq 1 \implies \delta^{(k)} \in \ell^\infty \]
\[\lim_{n \to \infty} \delta^{(k)}_n = 0 \implies \delta^{(k)} \in c^0 \]

2
where the last statement follows from the fact that the sequence \(\delta_n^{(k)} = 0 \) for all \(n > k \).

Now, if \(i \neq j \), then
\[
\begin{align*}
 d_1 (\delta^{(i)}, \delta^{(j)}) &= 1 + 1 = 2 \\
 d_2 (\delta^{(i)}, \delta^{(j)}) &= \sqrt{1+1} = \sqrt{2} \\
 d_\infty (\delta^{(i)}, \delta^{(j)}) &= 1
\end{align*}
\]

Since always \(d(\delta^{(i)}, \delta^{(j)}) \geq 1 \) for \(i \neq j \), the only sequences from \(X \) that are convergent are those that are eventually constant, and so \(X \) has no accumulation points. The result follows from problem 1(a).

3. 38.8 Let \(X \) and \(Y \) be closed subsets of \(\mathbb{R} \). Prove that \(X \times Y \) is a closed subset of \(\mathbb{R}^2 \). State and prove a generalization to \(\mathbb{R}^n \).

Solution. Consider \(X_1, \ldots, X_n \subset \mathbb{R} \) closed. The metric in \(\mathbb{R}^n \) is given by
\[
d((x_1, \ldots, x_n), (y_1, \ldots, y_n)) = \sqrt{\sum_{i=1}^{n} |x_i - y_i|^2}.
\]

Suppose \(\{x^{(k)}\} \) is a sequence in \(X_1 \times \cdots \times X_n \) such that \(\lim_{k \to \infty} x^{(k)} = x \) in \(\mathbb{R}^n \), that is
\[
\lim_{k \to \infty} d\left(x^{(k)}, x\right) = 0.
\]

Then for all \(i = 1, \ldots, n \),
\[
|x_i^{(k)} - x_i| \leq d\left(x^{(k)}, x\right) \to 0 \text{ as } k \to \infty,
\]
thus \(\lim_{k \to \infty} x_i^{(k)} = x_i \) in \(\mathbb{R} \). Since \(X_i \) are closed, \(x_i \in X_i \) for all \(i = 1, \ldots, n \), and, consequently,
\[
x = (x_1, \ldots, x_n) \in X_1 \times \cdots \times X_n.
\]

4. 38.13 Let \(M \) be a metric space. Prove the following:
(a) \(\overline{X} = \overline{\overline{X}} \) for all \(X \subset M \)
(b) \(\overline{X} \) is closed for all \(X \subset M \)
(c) For all \(X, Y \subset M \), if \(X \subset Y \subset M \), then \(\overline{X} \subset \overline{Y} \)
(d) \(\overline{X \cup Y} = \overline{X} \cup \overline{Y} \) for all \(X, Y \subset M \)
(e) If \(Y \) is a closed subset of \(M \) such that \(X \subset Y \), then \(\overline{X} \subset \overline{Y} \)
(f) If \(X \subset M \), then \(\overline{X} = \bigcap \{Y | X \subset Y \subset M, Y \text{ is closed}\} \)

Solution.
(a) Since any set is a subset of its closure, we have \(\overline{X} \subset \overline{\overline{X}} \). We need to prove \(\overline{\overline{X}} \subset \overline{X} \). Let \(x \in \overline{\overline{X}} \). Then there exists a sequence \(\{x_n\} \subset \overline{X} \), \(x_n \to x \) as \(n \to \infty \). Let \(m \in \mathbb{N} \). Since \(x_n \to x \) as \(n \to \infty \), there exists some \(n \) such that \(d(x_n, x) < 1/2m \). Since \(x_n \in \overline{X} \), there exists a sequence \(\{y_k\} \subset X \), \(y_k \to x_n \) as
\[k \to \infty, \text{ and so there exists } k \text{ such that } d(y_k, x_n) < 1/2m. \text{Put } z_m = y_k. \text{ Then } z_m \in X \text{ and} \]

\[d(z_m, x) \leq d(z_m, x_n) + d(x_n, x) < \frac{1}{2m} + \frac{1}{2m} = \frac{1}{m}. \]

We have constructed a sequence \(\{z_m\} \subset X, z_m \to x \text{ as } m \to \infty, \text{ so } x \in \overline{X}. \)

(b) Since \(\overline{X} = \overline{X} \) by (a), \(\overline{X} \) is closed.

(c) If \(x \in \overline{X}, \text{ then } x = \lim_{n \to \infty} x_n \text{ for some } \{x_n\} \subset X. \text{ Since } X \subset Y, \text{ also } \{x_n\} \subset Y, \text{ so } x \in \overline{Y}. \)

(d) Since \(X \subset X \cup Y \) and \(Y \subset X \cup Y, \) we have by (c) \(\overline{X} \subset \overline{X \cup Y} \) \(\text{and } \overline{Y} \subset \overline{X \cup Y}, \) \(\text{so } \overline{X} \cup \overline{Y} \subset \overline{X \cup Y}. \) \text{ For the opposite inclusion, let } x \in \overline{X \cup Y}. \text{ Then } x = \lim_{n \to \infty} x_n, \text{ where all } x_n \in X \cup Y. \text{ Either infinitely many } x_n \in X, \text{ in which case } x \in \overline{X} \text{ because the subsequence of } x_n \in X \text{ converges to } x, \text{ or infinitely many } x_n \in Y \text{ and then } x \in \overline{Y} \text{ (or both).} \)

(e) Since \(Y \) is closed, \(Y = \overline{Y}. \) \text{ By (c), } X \subset Y \text{ gives } \overline{X} \subset \overline{Y} = Y. \)

(f) Denote \(\mathcal{F} = \{Y | X \subset Y \subset M, \ Y \text{ is closed}\} \text{, the family of all closed sets in } M \text{ which contain } X. \text{ Since all sets in } \mathcal{F} \text{ are closed, and the intersection of a family of closed sets is closed, } \bigcap \mathcal{F} \text{ is closed. Since } X \text{ is subset of any set } Y \text{ in } \mathcal{F}, \text{ it is contained in their intersection, so } X \subset \bigcap \mathcal{F}. \text{ By (e), } \overline{X} \subset \bigcap \mathcal{F}. \text{ But } X \subset \overline{X} \text{ and } \overline{X} \text{ is closed by (b), so } \overline{X} \in \mathcal{F}, \text{ hence } \bigcap \mathcal{F} \subset \overline{X}. \)