1 General definition of sup and lim sup

The concept of supremum applies to extended reals also: $s \in \mathbb{R}^*$ is defined to be a supremum of $A \subset \mathbb{R}^* = \mathbb{R} \cup \{-\infty, \infty\}$ if

$$\forall x \in A : x \leq s$$
$$\forall b < s \ \exists x \in A : x > b$$

Exercise: Show that supremum is unique so we are entitled to write $s = \sup A$.

Extend the definition of limit to extended reals: $L = \lim_{n \to \infty} a_n$ if

$$\forall a > L \ \exists N_1 \in \mathbb{N} \ \forall n > N_1 : a_n < a$$
$$\forall b < L \ \exists N_2 \in \mathbb{N} \ \forall n > N_2 : a_n > b$$

We have equivalent definitions of $\limsup_{n \to \infty} a_n$:

1. $\limsup_{n \to \infty} a_n = \sup \{\lim_{k \to \infty} a_{n_k} | \{a_{n_k}\} \text{ is a subsequence of } \{a_n\} \text{ that has a limit}\}$
2. L is $\limsup_{n \to \infty} a_n$ if
 $$\forall a > L : \{n \in \mathbb{N} | a_n \geq a \} \text{ is finite}$$
 $$\forall b < L : \{n \in \mathbb{N} | a_n > b \} \text{ is infinite}$$
3. $\limsup_{n \to \infty} a_n = \lim A_n$, $A_n = \sup \{a_n, a_{n+1}, \ldots\}$

For bounded sequences, we have proved that $(3) \Rightarrow (1)$ in class, and we know that the quantity defined by (3) always exists and the quantity defined by (1) is unique. So the \limsup as defined by (3) and (1) are the same. Theorem 20.3 in the book shows that $(1) \Rightarrow (2)$, again for the case of bounded sequences (their $L + \varepsilon = a$ and $L - \varepsilon = b$ here), and the quantity defined by (1) always exists.

Exercise: Show that the implications $(3) \Rightarrow (1)$ and $(1) \Rightarrow (2)$ stay true whether $\{a_n\} \subset \mathbb{R}$ is bounded or not. However, to keep it simpler, we do not allow $\pm \infty$ as the values of a_n here.

2 In-class activity

Group 1 Show that for any sequence in \mathbb{R}, bounded or not, there is at most one $L \in \mathbb{R}^*$ that satisfies the conditions in (2):

$$\forall a > L : \{n \in \mathbb{N} | a_n \geq a \} \text{ is finite}$$
$$\forall b < L : \{n \in \mathbb{N} | a_n > b \} \text{ is infinite}$$

Group 2 Let $a_n > 0$ for all n. Show that

$$\limsup_{n \to \infty} \sqrt[n]{a_n} \leq \limsup_{n \to \infty} \frac{a_{n+1}}{a_n}.$$

Hint: show that $\limsup_{n \to \infty} \sqrt[n]{a_n} < a \Rightarrow \limsup_{n \to \infty} \sqrt[n]{a_n} \leq a$, using (2).
Solutions:

Group 1 Let $L_1 \neq L_2$, and without loss of generality, $L_1 < L_2$. Choose $M \in \mathbb{R}$ such that $L_1 < M < L_2$. From the first part of property (2) for $L = L_1$, the set $\{n \in \mathbb{N}|a_n \geq M\}$ is finite, because $M > L_1$. From the second part of property (2) for $L = L_2$, the set $\{n \in \mathbb{N}|a_n > M\}$ is infinite, because $M < L_2$. Since $\{n \in \mathbb{N}|a_n > M\} \subset \{n \in \mathbb{N}|a_n \geq M\}$, this is a contradiction.

Group 2 Let

$$\limsup_{n \to \infty} \frac{a_{n+1}}{a_n} < a,$$

for some a. We will show that

$$\limsup_{n \to \infty} \sqrt[n]{a_n} \leq a.$$

If $a = \infty$, we are done. So, suppose $a < \infty$. Since $\limsup_{n \to \infty} \frac{a_{n+1}}{a_n} < a$, there are only finitely many n such that $\limsup_{n \to \infty} \frac{a_{n+1}}{a_n} \geq a$. Thus, there exists an N such that for all $n \geq N$,

$$\frac{a_{n+1}}{a_n} < a.$$

By induction, we have for all $n \geq N$,

$$a_n \leq a^{n-N} a_N.$$

Taking the n-th root, for all $n \geq N$,

$$\sqrt[n]{a_n} \leq a^{\frac{n-N}{n}} a_N^{1/n}$$

so

$$\limsup_{n \to \infty} \sqrt[n]{a_n} \leq \limsup_{n \to \infty} a^{\frac{n-N}{n}} a_N^{1/n} = \lim_{n \to \infty} a^{\frac{n-N}{n}} a_N^{1/n} = a^{1} \cdot 1 = a.$$

Now, if $\limsup_{n \to \infty} \sqrt[n]{a_n} > \limsup_{n \to \infty} \frac{a_{n+1}}{a_n}$, there exists a such that

$$\limsup_{n \to \infty} \sqrt[n]{a_n} > a > \limsup_{n \to \infty} \frac{a_{n+1}}{a_n},$$

but from the above, $\limsup_{n \to \infty} \sqrt[n]{a_n} \leq a$, contradiction.